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A major problem in the consistent-histories approach to quantum theory is 
contending with the potentially large number of consistent sets of history 
propositions. One possibility is to find a scheme in which a unique set is selected 
in some way. However, in this paper the alternative approach is considered in 
which all consistent sets are kept, leading to a type of 'many-world-views' picture 
of the quantum theory. It is shown that a natural way of handling this situation 
is to employ the theory of varying sets (presheafs) on the space ~ of all nontrivial 
Boolean subalgebras of the orthoalgebra ~ of history propositions. This 
approach automatically includes the feature whereby probabilistic predictions are 
meaningful only in the context of a consistent set of history propositions. More 
strikingly, it leads to a picture in which the 'truth values' or 'semantic values' 
of such contextual predictions are not just two-valued (i.e., true and false) but 
instead lie in a larger logical algebra--a Heyting algebra--whose structure is 
determined by the space ~ of Boolean subalgebras of ~@. This topos-theoretic 
structure thereby gives a coherent mathematical framework in which to understand 
the internal logic of the many-world-views picture that arises naturally in the 
approach to quantum theory based on the ideas of consistent histories. 

1. I N T R O D U C T I O N  

The consistent-histories approach to standard quantum theory was pio- 
neered by Griffiths (1984), Oran, s (1988a-c, 1989, 1990, 1992), Gell-Mann 
and Hattie (1990a,b), and Hartle (1991, 1995) and was motivated in part by 
a desi re  to f ind  an  in te rpre ta t ion  of  q u a n t u m  theory  that  is less i n s t rumen ta l i s t  
than  is that  o f  the  s tandard  ' C o p e n h a g e n '  view. Such  a m o v e  is par t icu la r ly  
des i rab le  in  the con tex t  o f  q u a n t u m  cosmology ,  where  any  re fe rence  to an  
' ex te rna l  obse rve r '  seems s ingu la r ly  inappropr ia te .  A t  a m o r e  technica l  level ,  
the cons i s ten t -h i s to r ies  s cheme  p rov ides  an at t ract ive f r a m e w o r k  in  wh ich  
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to develop any views on quantum gravity where the microstructure of space- 
time itself is deemed to be the subject of quantum effects. In particular, 
questions about the probabilities of various 'generalized' space-times being 
realized in the universe are difficult to pose and analyze in the more traditional 
approaches to quantum theory. 

The central idea in the consistent-histories scheme is that (i) under 
certain conditions it is possible to assign probabilities to history propositions 
of a system rather than--as  in standard quantum theory--only to propositions 
concerning properties at a fixed time; and (ii) these probabilities refer to 'the 
way things are' in some--as  yet rather problematic--sense rather than to 
the results of possible measurements made by an observer from outside the 
system. A key ingredient in the theory is the 'decoherence funct ion ' - -a  
complex-valued function d(et, 13) of history propositions et, 13 that measures 
the 'quantum interference' between them. A complete 2 set of history proposi- 
tions C : =  {o/.1, ot 2 . . . . .  O/.n} is said to be (strongly) d-consistent if d(oti, otj) 
= 0 for all i 4= j,  and under these circumstances the probability that cti will 
be realized is identified with the real number d(oLi, oLi) (the formalism is such 
that these numbers always sum to 1 in a consistent set). 

Whether or not this scheme really answers the interpretational questions 
in quantum theory has been much debated; see, for example, Halliwell (1995), 
Dowker and Kent (1995, 1996), and Kent (1996). The central problem is the 
existence of many d-consistent sets that are mutually incompatible in the 
sense that they cannot be combined to give a single larger set. An analogous 
situation arises in standard quantum theory, but there the problem is resolved 
by the ubiquitous external observer deciding to measure one observable rather 
than another. However, this option is not available in the history framework 
and the problem must be addressed in some way that is internal to the 
theory itself. 

A priori there are two quite different ways of approaching this plethora 
of d-consistent sets. The first is to try to select a unique set that is 'realized' 
in the actual physical world. Such an approach is typical of those versions 
of the 'many worlds '--or,  in some views, 'many minds'--interpretation 3 of 
standard quantum theory in which a preferred basis in the Hilbert space of 
states is used to select one special branch. 

The second option is to accept the plethora of d-consistent sets as a new 
type of many-worlds or, perhaps better, 'many-world-views' interpretation 
of quantum theory. We shall show how the mathematical structure of the 
collection of all complete sets of history propositions can be exploited to 

2A set of history propositions is complete if (i) the physical realization of any one of them 
necessarily excludes all the others; and (ii) one of them must be realized. 

3For a recent review see Butterfield (1995). 
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provide a novel logic with which to interpret the probabilistic predictions of 
the theory in the many-world-views context where all d-consistent sets are 
treated on a par. This involves a type of logical algebra in which probabilistic 
propositions are (i) manifestly 'contextualized' to a complete set (which need 
not necessarily be d-consistent) and (ii) not simply binary-valued (i.e., not 
just true or false). However, this algebra is not  a 'quantum logic' in the usual 
sense of the phrase since it is distributive. On the other hand, it is not 
a simple classical Boolean algebra either; rather, it is an example of an 
'intuitionistic' logic. 

Of course, the idea that probabilistic assertions must be made in the 
context of a d-cons is ten t  set is not new-- the  theme has run through the entire 
development of the consistent-histories program and, in particular, has been 
reemphasized recently by Griffiths (1993, 1996). However, allowing the 
context to be a general complete set and, more dramatically, the use of a 
'multivalued' logic are new departures--although, as I hope to show, they 
follow naturally from the mathematical structure of the consistent-histories 
formalism. Indeed, the basic idea is easy enough to state, although its ramifica- 
tions lead at once to concepts drawn from the sophisticated branch of mathe- 
matics known as 'topos 4 theory.' 

To see how topos ideas arise, suppose that C is a complete set of history 
propositions that is not  d-consistent: what would be the status of a probabilistic 
prediction made in this context? One response is "none at all," but a more 
physically appropriate observation is that even if C is not itself d-consistent, 
it might admit a coarse-graining C '  (i.e., a set of propositions, each of which 
is a sum of propositions in C) that is d-consistent and in which, therefore, 
the probabilistic prediction is meaningful; in other words, by agreeing to use 
less precise propositions, we may arrive at a situation where probabilities 
can  be assigned meaningfully. However, we then note that (i) any further 
coarse-grainings of C'  will also be d-consistent and (ii) there may be many 
such initial choices C '  and the same holds for further coarse-grainings of 
any of them. In the language of topos theory this is expressed by saying that 
the collection of  all d-consistent coarse-grainings of C forms a s ieve  on C 
with respect to the partial ordering induced by coarse-graining. The main 
idea is to assign this sieve as the 'truth value '--or ,  perhaps better, the 
'meaning' or 'semantic va lue ' - -o f  a proposition in the context of C. The 
crucial fact that underpins thissuggestion is that the set of all such sieves 
does indeed form a logical algebra, albeit one that contains more than just 
the values 'true' and 'false.' 

The natural occurrence of sieves in the consistent-histories scheme is 
the primary motivation for claiming that topos theory--especially the theory 

4A topos is a special type of category. The relevant details are given further on in this paper. 
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of sets varying over a partially ordered se t - - i s  the natural mathematical tool 
with which to probe the internal logic of  this particular approach to quantum 
theory. Fortunately, for our purposes it is not necessary to delve too deeply 5 
into th is - - ra ther  abstract- -branch of mathematics, and to facilitate the expo- 
sition the paper starts with a short summary of some of the relevant ideas 
about varying sets. This is followed by a discussion of the crucial poset 6 
of  all nontrivial Boolean subalgebras of  the quantum algebra of  history 
propositions. Then comes the heart of  the paper, where the appropriate sets 
of  semantic values for propositions in the consistent-histories program are 
investigated. Some less central technical material is relegated to the 
appendices. 

2. T H E  T O P O S  O F  VARYING SETS 

2.1. Second-Level Propositions 

We begin with the simplest of  remarks. In standard set theory, to each 
subset A of a set X there is associated a 'characteristic map '  XA: X ---> {0, 1 } 
defined by 

{0 if x ~ A  (2.1) 
• := otherwise 

so that 

A = (XA)-'{ 1} (2.2) 

Conversely, any function X: X ---> {0, 1 } defines a unique subset A• := •  { 1 } 
of  X whose characteristic function is equal to • 

Next, consider a hypothetical classical theory whose basic ingredient is 
a Boolean lattice ~ 9  ~ of propositions about the physical universe. 7 A 'pure 
state' tr of  the system will give rise to a valuation on ~ ,  i.e., a homomor- 
phism V'~: ~ --> 11 from ~ 9  ~ to the simplest Boolean algebra 11 := {0, 1} 
with '0 '  interpreted as ' false '  and ' 1' as 'true.'  Thus a valuation is a character- 
istic map that is also a homomorphism between Boolean algebras. 

Now let us consider what a probabilistic version of such a theory might 
look like. In theories with a realist f l avor - -a s  is, arguably, the case with the 
consistent-histories p rogram-- there  is a temptation (to which I shall succumb) 
to interpret probability in the sense of 'propensity '  rather than in terms 

51 have deliberately avoided any serious use of category language in the main text of the paper, 
but have added some more technical remarks in the footnotes. 

6The word 'poset" is an abbreviation for 'partially ordered set.' 
7By 'universe' I mean the physical world with all its spatiotemporal aspects. Thus we are 
talking about 'generalized histories,' not states of affairs at a fixed time. 
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of (intersubjective) states of knowledge or relative frequency in repeated 
measurements. In particular, the proposition " a  e ~ is true with probability 
p"  (to be denoted by (a, p}) is to be read as saying that the state of  affairs 
represented by a has an 'intrinsic tendency' to occur that is measured by the 
numberp  e [0, 1]. Thus (a, p) is to be construed as being about the universe 
'itself' in some way rather than, in particular, our knowledge of the universe 
or the results of sequences of measurements. A proposition of this type will 
be labeled 'second-level' by which I mean simply that it is a proposition 
about the universe that itself involves a proposition a e ~ .  

At a mathematical level, we observe that to each probability measure 
Ix on ~ @ (a 'statistical state' of  the system) and for each p e [0, 1] there 
is associated the subset of all a e ~ such that Ix(a) = p. In turn, this 
gives rise to the characteristic map • ~ --~ {0, 1 } defined by 

1 if Ix(u) = p  
•  := otherwise 

(2.3) 

as a particular example of the situation represented by (2.1). 
Note that the characteristic map in (2.3) is not a valuation on ~ 

role is played by the Boolean structure on ~ ,  which, in this situation, is 
regarded purely as a set. On the other hand, we can think of the second-level 
propositions (a, p) as generating a new logical algebra with respect to which 
each measure IX on ~ @  produces a genuine {0, 1 }-valued valuation V ~ 
defined by 

{~ if Ix(a) = p 
V~((a' P)) := otherwise (2.4) 

Thus, for example, the conjunction operation on these new propositions is 
defined 8 to be such that, for all Ix, 

V~((ot, p) ^ {~, q)) := { 1 if  Ix(a) = p and Ix(B) = q 
otherwise (2.5) 

This leads naturally to the idea of two second-level propositions being Ix- 
equivalent if their V" valuations are equal, and semantically equivalent if  

8 More formally, the second-level propositions (a, p) can be viewed as the sentence letters of 
a formal language whose sentences are defined recursively by the operations of conjunction, 
disjunction, and logical implication. The {0, 1 }-valued function V ~ on the set qbo of sentence 
letters is then extended inductively to the set qb of sentences through successive applications 
of rules of the type exemplified by (2.5); see Goldblatt (1984) for further discussion of this 
way of looking at things. 
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they are i~-equivalent for all measures IX. For example, for all IX and all p 
[0, 1] we have 

V~((a, p)) = Vr 1 - p)) (2.6) 

since Ix(a) + Ix('~a) = 1 for all at ~ ~ .  Hence (a ,  p) and ( ~ a ,  1 - p) 
are semantical ly  equivalent for all p ~ [0, 1]. A more  complex  example  is 
given by the result that, for any disjoint propositions a and [3 (i.e., a ^ [3 = 0), 

V~((a v [3, p)) = V~( V (a, p - q) A ([3, q)l (2.7) 
\qe [0,1] / 

which arises from the fact that Ix(a v [3) = Ix(a) + IX([3) for any such pair 
of propositions. Thus we see that, if a A [3 = 0, then (a  v [3, p) and Vq~lOjl 
(a, p - q) ^ ([3, q) are semantically equivalent for all p E [0, 1]. 

The situation in the consistent-histories program is similar in many 
respects. Once again, there is an algebra ~ of 'universe propositions,' 
al though--as part of a quantum theory-- i t  is no longer Boolean. There are 
also second-level propositions of the type (a,  p), although the role of a 
probability measure p~: ~ 9  ~ ~ R is now taken by a decoherence function d: 
~ • ~ ~ C. However, the really significant new features of  the consis- 
tent-histories theory are that (i) a proposition (a,  p) is physically meaningful 
only in the context of a d-consistent set (or, as we shall see, any complete 
set) of  histories, and (ii) as we shall show, the associated truth values, or 
semantic values, can be regarded as lying in an algebra that is larger than 
{0, 1}. 

2.2. Sets  T h r o u g h  T i m e  

As an example 9 of how contexts and generalized semantic values can 
arise, consider a fixed set X of people who are all alive at some initial time 
and whose bodies are preserved once they die (and who are still referred to 
as 'people' in that state). Thus if D(t) C X denotes the subset of dead people 
at any time t, then as t increases, D(t) will clearly stay constant or increase, 
i.e., h <- tz implies D(h) C D(t2). Such a parametrized family of  sets D(t), 
t ~ R, is an example of  what has been called a "set through time" by those 
working in the foundations of topos theory (for example, Lawvere, 1975; 
Goldblatt, 1984; Bell, 1988; MacLane and Moerdijk, 1992). 

Now suppose that some members of  our population a re - - in  f a c t - -  
immortal. Suppose also that the members of X are all philosophers with a 
nostalgic leaning toward logical positivism. Then what truth value should be 

9A similar example has been explored by Dummett (1959) in the form of the proposition, "A 
city will never be built on this spot"; I thank Jeremy Butterfield for this observation. 
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assigned to the proposition "person x is mortal" if all truth statements are 
required to be verifiable in some operational sense? If death has already 
occurred by the time the proposition is asserted, then, of  course, the proposi- 
tion is true (assuming that the deadness of a body is something that can be 
confirmed operationally). However, if x is alive, the proposition cannot be 
said to be t rue- -on  the assumption that mortality of a living being cannot 
be verified operationally--but neither can it be denied, since even if x is 
numbered among the immortals, there is no way of showing this. Thus we 
are led to the notion of a 'stage of truth' as a context in which a proposition 
acquires meaning-- in  our case, the time t - - and  to the idea that the truth 
values of a statement at a stage t may not just lie in the set {0, 1 }. 

Of course, a dedicated verificationist might simply insist that the proposi- 
tion "x is mortal" is meaningless if asserted at a time to when x is not dead. 
However, topos theory provides a more positive answer that stems from the 
observation that there may be a later time t at which x does die, and then of 
course x ~ D(t ')  for all times t' --> t. A key idea in the theory of sets-through- 
time is that the 'truth va lue ' - -or ,  perhaps better, the 'meaning' or 'semantic 
va lue ' - - a t  the stage to of the proposition "x is mortal" is defined to be the 
set X~(x) of all later times ~~ t at which x is dead: 

Xt~ := {t -> tolx ~ D(t)} (2.8) 

Note that if x never dies, i.e., if he or she is immortal, then the right- 
hand side of (2.8) is just the empty set. On the other hand, x is dead at a 
time t if and only if 

X~ = 1'(0 := [t, ~) (2.9) 

Equivalently, at stage t, 

D(t) = (X~ { 1"(01 (2.10) 

When compared with (2.2), the relation (2.10) shows that the parametrized 
family of maps •176 X --~ f~(t0), to e R- -where  ~(t0) denotes the collection 
of all upper sets lying above to (i.e., sets of the form [s, ~), s >- t0)--is the 
analogue of  the single characteristic function of  normal set theory. 

From a logical perspective, the crucial property of this set f~(to) of all 
possible semantic values at stage to is that it possesses the structure of a 
Heyting algebra. Thus (i) ~(t0) is a distributive lattice under the usual set- 
theoretic operations of union and intersection, and (ii) ~(to) has the property 

~~ example gets a little artificial at this point in the sense that a transtemporal view of the 
history of the population X is needed for the semantic values to be appreciated: clearly a job 
for one of the immortals! 
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that for  any a, b E 12(to) there is a unique e lement  (a ~ b) ~ O(t0) (with 
the intui t ive meaning  " i f  a, then b") sat isfying,  for all  c ~ fZ(to), 

c - < ( a ~ b )  i f  and only i f  c ^ a - < b  (2.11) 

The  negat ion opera t ion  in such an a lgebra  is def ined by ~ a  : =  (a ~ 0), and 
satisfies the relat ion ~ a ----- - ~ a  for all a. ~2 Indeed,  it  can be shown that a 
Heyt ing  a lgebra  is Boolean  i f  and only i f  a = "~'~a for all a. 

2.3. Se ts  V a r y i n g  o v e r  a P a r t i a l l y  O r d e r e d  Se t  

A key fact for  our  p rogram is that the ideas ske tched above  extend 
readi ly  to the si tuation where  the ' s tages  o f  t ruth '  are e lements  o f  a general  
par t ia l ly  ordered set ~ (for example ,  Goldbla t t ,  1984; Bell ,  1988). In our  
case,  9 ~ will  be the set o f  nontr ivial  Boolean  subalgebras  o f  the space o f  
quantum history propos i t ions  with W~ --< W2 def ined  to mean W2 C W1 (so that 
W2 is a ' coarse -gra in ing '  o f  Wt). The  necessary  mathemat ica l  deve lopmen t  is 
most  natural ly expressed  in the language o f  ca tegory  theory, a l though for  
our  purposes  all that is rea l ly  needed  is the idea  that a ca tegory  consists  o f  
a col lect ion of  things ca l led  ' o b j e c t s ' - - m a t h e m a t i c a l  enti t ies with some 
prec ise ly  def ined internal  s t r u c t u r e - - a n d  'morph i sms '  be tween  pairs  of  such 
objects ,  where  a morph i sm is a type o f  s t ructure-preserving ' m a p '  (but not  
necessar i ly  in the sense o f  set theory).  

The re levant  ca tegory  for us is the ca tegory  Set  ~ o f  "vary ing  sets over  
~ . "  Here,  an object  X is def ined to be an ass ignment  to each p ~ ~ o f  a 
set X(p), and an ass ignment  to each pair  p --< q of  a map  Xpq: X(p) ---> X(q) 
such that (i) Xpp is the ident i ty  map  on X(p), and (ii) the relat ion 

Xq r o Xpq = Xpr (2.12) 

is sat isf ied whenever  p - -  q --< r. t3 
A morphism "q: Y --> X between two such objects  Y, X in Set  ~ is def ined 

to be a fami ly  o f  maps  -qp: Y(p) ~ X(p),  p ~ ~ ,  sat isfying the compat ib i l -  
i ty condi t ions 14 

~q o ypq = Xpq o ~qp (2.13) 

H A classic example of a Heyting algebra is the collection of all open sets for a topological 
space X. In particular, if A is an open set, then the negation "~A is defined as the interior, 
int(X - A), of X - A. It is clear that A C_ infiX - int(X - A)). 

~2This is one of the main reasons why a Heyting algebra is chosen as the formal mathematical 
structure that underlies intuitionistic logic. Thus there is a strong connection between the 
theory of sets through time and the logic of intuitionism. 

~3 In the context of category theory, what is being exploited here is the familiar fact that a poset 
can be regarded as a category in its own right in which (i) the objects are the elements 

of ~ and (ii) there are no morphisms p --~ q unless p --< q, in which case there is just one. 
A 'varying set over ~ '  is then just a functor from the category ~ to the category 'Set' of 
normal sets. This is closely related to the concept of a 'presheaf' on ~.  

i4If ~ is regarded as a category, then -q is a 'natural transformation' between the functors Y 
and X. 
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as shown in the commutative diagram 

Ypq 
r(p) ~ r(q) 

l 'qp ~'qq (2.14) 

X.q 
X(p) > X(q) 

In particular, a subobject of a varying set ts X = {X(p), p e ) }  is a varying 
set A = {A(p), p ~ ) }  with the property that A(p) C_ X(p) for all p ~ ) ,  
and such that Apq" A(p) --) A(q) is just the restriction of Xpq: X(p) ---) X(q) 
to the subset A(p) _C X(p). These relations are captured nicely by the commuta- 
tive diagram 

A(p) Apq 
�9 > A ( q )  

Xpq 
X(p) > X(q) 

where the vertical arrows are subset inclusions. 
A simple, but important special case is when the varying set X(p) is in 

fact constant i.e., X(p) = X for all p e ~ ,  and X m is the identity map from 
X = X(p) to X = X(q) for all pairs p ~- q. In this situation, each set A(p), 
p E @, can be regarded as a subset of the fixed set X, and the condition in 
(2.15) for a varying set A := [A(p), p E ~} to be a bona fide subobject of 
X reduces to 

p --< q implies A(p) C_ A(q) (2.16) 

This special case where X(p) is constant also gives rise to the varying- 
set analogue of a 'complement' of a subset. The obvious family of subsets 
of X to serve as the complement of {A(p), p ~ ~} is {X - A(p), p E ~} ,  
but this does not give a proper varying set, since p <- q implies X - A(p) 
D X - A(q), which is the wrong behavior. It turns out that the appropriate 
definition is ',A := {--A(p), p ~ ~ }, where 

~A(p) := {x e XIVq >~ p, x ~ A(q)} (2.17) 

which is immediately checked to be a genuine varying set, i.e., p <- q implies 

ISThe notation does not include a specific reference to the functions Xeq: X(p) ~ X(q), but 
these are understood to be implicitly included. 
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-~A(p) C_ -~A(q). It follows that x ~t -~A(p) if and only if there is some q ----- 
p such that x ~ A(q), and hence 

-~-~A(p) := {x ~ X I V q  >- p 3r >- q s.t. x ~ A(r)} (2.18) 

It is clear that A(p)  C -~A(p ) ,  whereas in normal set theory the double 
complement of a subset is always equal to the subset itself. This nonstandard 
behavior in the varying-set theory is a reflection of the fact that the underlying 
logical structure is non-Boolean (see later). 

As in the case of sets through time, a key role is played by the collections 
l~(p), p E ~ ,  of all upper sets lying above p. More precisely, a sieve 16 on 
p in ~ is defined to be any subset S of ~ such that if r ~ S, then (i) r --> p 
and (ii) r '  ~ S for all r '  --> r. For each p ~ ~ ,  the set f~(p) of all sieves on 
p can be shown to be a Heyting algebra (under the usual set-theoretic opera- 
tions of  inclusion, intersection, and union of  subsets17), and for all pairs p 
--< q there is a natural map [~pq'- [~(p) --> l'l(q) defined by 

~-~pq(S) ".= S ~) t (q)  (2.19) 

where l'(q) := {r E ~ l r  -- q} is the unit element in the Heyting algebra 
O(q) (the null element is the empty set). It is easy to see that, with the maps 
l~pq in (2.19), 1~ := {f~(p), p e @} is a varying set over ~ and hence an 
object in the category Set ~. 

A very important example of the use of  f~ occurs if A is a subobject of 
the object X. There is then an associated characteristic morphism • X 
l~ with, at each stage p ~ ~ ,  the 'component'  • X(p) ~ ~ ( p )  being 
defined by 

xa(x) := {q >-- plXpq(X) E A(q)} (2.20) 

where the fact that the right-hand side of (2.20) actually is a sieve on p in 
follows from the defining properties of a subobject. Thus in each 'branch' 

of the poset going up from p, • picks out the first member q (the "time 
till truth") in that branch for which Xpq(X) lies in the subset A(q), and the 
commutative diagram (2.15) then guarantees that Xpr(X) will lie in A(r) for 
all r >- q. In the special case where X(p) = X for all p, (2.20) simplifies to 
[cf. (2.8)1 

xA(x) := {q --> p l x  E A(q)} (2.21) 

In what follows, the expression (2.21) plays a crucial role as the analogue 
in the theory of varying sets of the characteristic map (2.1) • X ~ {0, 1} 

16This is the notation employed by Bell (1988); other authors (for example, MacLane and 
Moerdijk, 1992) use the term 'cosieve' for what Bell calls a 'sieve' and vice versa. 

~7The precise algebraic relations will be given later for the specific example of interest in the 
consistent-histories theory. 
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of normal set theory. Indeed, the analogue of the relation (2.2) for the situation 
epitomized by (2.21) is [cf. (2.10)] 

A(p) = (• (2.22) 

at each stage p E ~ .  Conversely, each morphism X: X ---) lq defines a 
subobject of X [via (2.22)], and for this reason the object ~ in Set ~ is known 
as the subobject classifier in the category Set~; the existence of such an 
object is one of the defining properties 18 for a category to be a topos, which 
Set ~ is. As the target of characteristic maps (i.e., the analogue of {0, 1 } in 
normal set theory), f l  can be thought of as the 'object of truth va lues ' - - a  
soubriquet that is reinforced by the observation that f~ has the internal structure 
of a Heyting algebra. For example, the conjunction A: f~ • f~ ~ ~ is defined 
to be the morphism in the category Set ~ whose components ^p: f~(p) X 
lq(p) ---) fl(p),  p �9 ~ ,  are the conjunction operations (the set-theoretic 
intersection of sieves on p) in the 'local' Heyting algebras f~(p); the other 
logical operations are defined in a similar way. 

The main thesis of the present paper is that a situation closely analogous 
to the one sketched above arises naturally in the theory of consistent histories 
where the basic quantum ingredients are an orthoalgebra ~ of  history 
propositions and a specific decoherence function d. In particular, we have 
(i) the idea of a 'context' or a 'stage' and (ii) the property tha t - -a t  each 
such s tage-- the truth values lie in a Heyting algebra. As emphasized already, 
the key point in the formalism of consistent histories is that the central 
second-level propositions (or, p> ("the probability of the history proposition 
tx e ~ is p") only have a physical meaning in the context of a particular 
d-consistent set of  propositions to which ot belongs or, to be more precise 
(see later), in the context of any set of propositions that can be coarse-grained 
to give a d-consistent set that contains et. It is technically convenient to 
employ the Boolean subalgebra of ~ generated by any given set of history 
propositions, rather than the set itself, and in this framework my thesis is 
essentially that: 

�9 each nontrivial Boolean subalgebra W0 of the set ~ of all history 
propositions can serve as a possible 'stage' 

�9 the truth value (or semantic value) of (a, p) at a particular stage Wo 
is related to the collection of  all coarse-grainings W of Wo that contain 
ot and are d-consistent. 

As we shall see, the implementation of this idea involves a specific 
application of the idea of sets varying over a poset, and hence we do indeed 

~SAnother defining property for a category ~ to be a topos is that a product A X B exists for 
any pair of objects A, B in ~. For the full definition see one of the standard texts (for example, 
Goldblatt, 1984; Bell, 1988; MacLane and Moerdijk, 1992). 
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obtain a Heyting algebra o f  possible semantic values at each stage. Moreover,  
we will show how second-level propositions o f  the type (ct, p) can be associ- 
ated w i t h  D~-valued morphisms;  as such, they belong to the internal logic 
(and, indeed, formal language) that is associated with the topos Set m, where 

denotes the poset o f  all nontrivial Boolean subalgebras of  ~ '  (see below 
for details). Thus the internal logic o f  the topos provides a f ramework for 
understanding the logical structure of  probabilistic predictions in a consistent- 
histories theory in a way that automatically includes all possible contextual 
references to d-consistent sets. We thereby arrive at a coherent  logical structure 
for this particular 'many-wor ld-v iews '  picture o f  quantum theory. 

3. B O O L E A N  S U B A L G E B R A S  O F  P R O P O S I T I O N S  

3.1. The General Formalism of Consistent Histories 

In the general approach to the consistent-history formalism developed 
by Isham (1994) and Isham and Linden (1994), the central mathematical  
ingredient is a pair (~ ~ )  where ~ is an orthoalgebra t9 o f  'history 
proposit ions '  and ~ is the space of  decoherence functions defined on this 
algebra [for a short summary o f  the scheme see Isham (1995)]. 

It should be emphasized from the outset that, in practice, the orthoalgebra 
formalism is much less abstract than it might  appear at first. In particular, 
for any given physical system it is always appropriate to consider the possibil- 
ity that ~ may simply be the algebra P(~ o f  projection operators on some 
Hilbert space W; in this case, ct ~) 13 is defined if and only if ct13 = 0, and 
then ot @ 13 = ct § 13. For example, it was shown in Isham (1994) that the 
history version o f  normal quantum theory for, say, a finite number  o f  time 
points {tl, t2 . . . . .  tn} can be cast into this form. Specifically, the history 
propositions are identified as projection operators on the tensor product  space 
~t~ | ~t2 | " '"  | ~t , ,  where each ~ti is a copy of  the Hilbert space o f  
states ~ o f  standard canonical quantum theory. The extension of  this idea 
to a continuous time variable is discussed in Isham and Linden (1995). 

Returning to the general formalism, we recall that a d e c o h e r e n c e f u n c t i o n  
is a map d: ~ x ~ ~ C that satisfies the fol lowing conditions: 

19An orthoalgebra ~ is a partially ordered set with greatest element 1 and least element 0 
and for which there is a notion of when two elements et, 13 are orthogonal, denoted ot A_ 13. 
If ct and 13 are such that ct .k 13, then they can be combined to give a new element et ~) 13 

~ Furthermore, et _< 13 if and only if 13 = a E3 ~/for some ~, e ~ There is also a 
negation operation with tx ~ "~tx = 1 [for the full definition of an orthoalgebra see Foulis 
et al. (1992)]. It should be noted that the structure of an orthoalgebra is much weaker than 
that of a lattice. In the latter there are two connectives ^ and v, both of which are defined 
on all pairs of elements, unlike the single, partial operation ~ in an orthoalgebra. A lattice 
is a special type of orthoalgebra with tx (b 13 being defined on disjoint lattice elements et, 13 
(i.e., those for which ~x <- 413) as oL ~ 13 := et v 13. 
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1. Hermiticity: d(ct, 13) = d(13, t~)* for all ct, 13. 
2. Positivity: d(ot, eL) >_ 0 for all et. 
3. Additivity: if ot _L I~ (i.e., ct and 13 are orthogonal), then, for all ~/, 

d(et ~) 13, "y) = d(ct, "y) + d(13, ~/). 
4. Normalization: d(1, 1) = 1. 

Note that the additivity condition implies that, for all ct ~ ~ ,  

d(0, ct) = 0 (3.1) 

We also note that, as shown by Isham et al. (1994), in the concrete case 
where ~@ = P(~ for some Hilbert space ~ every decoherence function 
can be written in the form 

d(ct, 13) = trv| | 13X) (3.2) 

where X belongs to a precisely specified class of operators on ~ | ~ .  
Following GeU-Mann and Hartle, a finite set C := {eta, et2 . . . . .  aN} 

of nonzero propositions is said to be complete if (i) cti _k ctj for all i, j = 1, 
2 . . . . .  N; (ii) the elements of C are 'jointly compatible,' i.e., they belong 
to some Boolean subalgebra of ~ ;  and (iii) ctt ~) ct2 �9 "-- ~) aN = 1. In 
algebraic terms, a complete set of history propositions is simply a finite 
partition of unity in the orthoalgebra ~@. 

It should be noted that in the history version of standard quantum theory, 
the decoherence function for a particular system depends on both the initial 
state and the Hamiltonian. Thus, in general, for any specific history system 
the decoherence function d will be one particular element of 9 .  It must be 
emphasized that only d-consistent sets of history propositions are given an 
immediate physical interpretation. A complete set C of history propositions 
is said to be 2~ d-consistent if d(ct, 13) = 0 for all et, 13 ~ C such that et :P 
~. Under these circumstances d(et, et) is regarded as the probability that the 
history proposition ~t is true. The axioms above then guarantee that the usual 
Kolmogoroff probability rules are satisfied on the Boolean algebra generated 
by C. 

It is worth noting that the idea of an orthoalgebra is closely related to 
that of a Boolean manifold: an algebra that is 'covered' by a collection of 
maximal Boolean subalgebras with appropriate compatibility conditions on 
any pair that overlap (Hardegree and Frazer, 1982). Being Boolean, these 
subalgebras of propositions carry a logical structure that is essentially classi- 
cal, a feature of the consistent-histories scheme that was focal in the seminal 
work of Griffiths and Omn~s and that has been reemphasized recently by 

2~ what follows I shall only consider the strong case where d(et, 13) itself vanishes, rather 
than just the real part of d(et, 13). The phrase 'consistent set' will always mean 'strongly' 
consistent in this sense. 
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Griffiths (1993, 1996). In the approach outlined above, these Boolean algebras 
are glued together from the outset to form an orthoalgebra ~@ of propositions 
from which the physically interpretable subsets are selected by the consistency 
conditions with respect to a chosen decoherence function. 

Any partition of unity C := {cq, et 2 . . . . .  O/-N} generates a Boolean 
algebra whose elements are the finite 21 ~)-sums of elements of C (hence the 
elements of C are atoms of this algebra). If C is d-consistent, and if ct := 
(~)ieltOti and [3 := ~3j~12ctj are two members of the algebra (where It and 12 
are subsets of the index set { 1, 2 . . . . .  N}), then, by the additivity property 
of the decoherence function d, 

d(ot, [3) = 

On the other hand 

and so 

for all ct, [3 in C. 

d(oti, eli) (3.3) 
iEllf')l 2 

ct^[3  = O oLi (3.4)  
i~llNl2 

d ( a ,  [3) = d ( a  ^ [3, ~ ^ [3) (3.5) 

In a general orthoalgebra ~ not every Boolean subalgebra is necessar- 
ily generated by a partition of uni ty--for  example, any Boolean subalgebra 
that is not atomic falls in this class. Partly for this reason it is helpful to 
define consistency for Boolean algebras per se, rather than go via partitions 
of unity. Moreover, it is also pedagogically useful to do so, as it emphasizes 
the essentially 'classical' nature of the properties of the propositions in a d- 
consistent set. Motivated by (3.5), I propose the following definition: 

Definition 3.1. For a given history system (~@, d), where d ~ ~ ,  a 
Boolean subalgebra W of ~ is d-consistent if for all ct, [3 E W we have 
d(oL, [3) : d ( a  ^ [3, oL A [3). 

Note that the smallest subalgebra {0, 1 } is trivially d-consistent for any 
d since, by virtue of (3.1), d(0, 1) = 0 = d(0, 0) = d(0 ^ 1, 0 ^ 1). It is 
technically convenient to exclude this trivial Boolean subalgebra as a possible 
consistent set (it contains no interesting propositions) and this will be done 
in what follows. The set of all nontrivial Boolean subalgebras of ~ will 
be denoted ~ ;  the set of all nontrivial d-consistent Boolean subalgebras will 
be denoted ~d. 

2~ With appropriate care these ideas can be generalized to include countable sets and sums, but 
the details are not important here. 
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The relation of the definition above to the earlier one of strong consis- 
tency is contained in the following lemma. 

Lemma. The condition (3.5) on all elements o~, [3 in a Boolean subalgebra 
W is equivalent to 

d(tx, [3) = 0 for all or, 13 ~ W such that et _L [3 (3.6) 

Proof. Suppose that (3.5) is true and let ot / [3. Then ot ^ [3 = 0 (in a 
Boolean algebra, ot _L [3 if and only if ot ^ [3 = 0) and hence d(ot, [3) = d(0, 
0) = 0. 

Conversely, suppose (3.6) is true and let or, [3 ~ W. Then there exist 
jointly orthogonal elements tx 1, [31, ~/ E W such that tx = oq G ~/and [3 = 
131 E) % Indeed, we can choose eq := ot ^ --,[3, [31 := [3 ^ -',or, and ~ / :=  tx 
^ [3, where the general lattice operation ^ is well defined in this Boolean 
subalgebra. Then, by the additivity property of the decoherence function, 

d(ot, [3) = d(oq E) % [31 E) ~/) = d(ott, [31) + d(oq, ~) + d(% [31) -'F d(% ~/) 

= d(et ^ [3, ot ^ [3) (3.7) 

since (3.6) means that oq _1_ [31 implies d(Otl, [31) = 0, etc. QED 
In what follows I shall refer to a Boolean subalgebra of ~ as a window 

in order to convey the idea that it affords a potential way of  'looking' at the 
physical world; the initial letter 'w' also serves to remind us that a window 
can be regarded as a possible 'world-view' or even 'weltanschauung.' A d- 
consistent window is what Griffiths (1996) calls a 'framework.' 

3.2. Key Features of the Space ~ of Boolean Subalgebras 

The crucial property of ~ for our purposes is that it is a partially ordered 
set with respect to subset inclusion, and we write WI <- W2 if WI D_ W2 (Wl 
- W2 is defined in this way rather than as W~ C_ W2 in order to be consistent 
with our earlier discussion of sets varying over a poset). For such a pair we 
say that (i) Wl is a fine-graining of W2 and (ii) W2 is a coarse-graining of 
WI (for convenience, this terminology includes the idea that any window W 

~ is both a coarse-graining and a fine-graining of itself). Note that the 
set ~d  of d-consistent windows is a subset of ~ and inherits its partial- 
ordering structure. Moreover, ~d  is closed under coarse-graining: if WI is 
d-consistent, then so is any WE >-- WI; thus coarse-graining preserves d- 
consis tency--a  crucial property for our later discussions. However, there is 
generally no biggest (with respect to C_) d-consistent coarse-graining of a 
non-d-consistent window. 

Let us now recall the earlier discussion of sets varying over a poset 
while making the following key definitions. 
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Definition 3.2. 1. A sieve on W0 e ~ in 9~ is a (possibly empty) subset 
S of windows in ~ such that 

(a) W E S implies W >- Wo (i.e., W C Wo) 
(b) W e S and W' ~ W (i.e., W' C W) implies W' e S. 

Thus a sieve on W0 is an upper set in (~ ,  ~ )  all of whose elements are 
coarse-grainings of Wo. 

The set of all sieves on Wo is denoted l)(Wo). 
2. A sieve S on Wo is d-consistent if every W ~ S is d-consistent. 

The following properties of sieves are crucial for our purposes. 
1. For each Wo, the set II(W0) of all sieves on Wo in 5~ is a partially 

ordered set with Si --< $2 being defined as Si C_ $2. The greatest element 1 
is the principal sieve 

T ( W o ) : = I W e f f $ 1 W > - W o l - { W e ~ I W C W o }  (3.8) 

and the least element 0 is the empty subset of windows. 
2. The poset ~(Wo) is a distributive lattice with the operations (i) $1 ^ 

$2 := S i f )  $2 and (ii) SI v SE := Sl tO $2. In fact, l)(Wo) is a Heyting 
algebra, i.e., given sieves Sl and $2, there is a sieve (Sl ~ $2) such that, for 
all S, 

S --- (Sl ~ $2) if and only if S ^ $1 --< $2 (3.9) 

This sieve is defined as 

(Sl ~ $2) : = { W C  WolVW' C_ W i f W '  ~ St then W' E Sz} 
(3.10) 

In a Heyting algebra, the negation of an element x is defined by ",x :--- (x 
0). Thus, for a sieve S on Wo, 

- ,S: = {WC W01VW' C_ W, W' ~ S} (3.11) 

As explained earlier, a central idea in the internal logic of varying sets is 
that the Heyting algebra ~(Wo) serves as the space of semantic values for 
propositions at the stage Wo. 

3. The collection 1~ := {12(W), W e ~}  is a set varying over ff$ under 
the definition, for all pairs Wl -< W2 (i.e., W2 C_ W0, 

~'~WIW2: ~'~(Wl) ~ ~(W2) 

S ~ S N T(W2) := {WC_ W21W ~ S} (3.12) 

We can also define the sets of d-consistent sieves 

l~d(w) := {S E I)(W)IS is d-consistent} (3.13) 

and note that, like ~ ,  12 d := {12d(W), W e ~}  is a set varying over (~ ,  --) 
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if, for W1 <- W2, 12wiw2.a �9 l'ld(WO ---> 12d(W2) is defined by l)dlw2(S) := S 
n ~(w2). 

Finally, although no explicit use of it will be made here, we note that 
another simple example of  a set varying over (~ ,  <-) is given by {~w, W 
E ~ 1 ,  where ~ w  is defined to be the set of all decoherence functions for 
which W is a d-consistent window: 

~)w := {d ~ ~ I W  ~ ~d} (3.14) 

The family {~w, W e ~ }  is a genuine object in Set ~ since if W2 is a coarse- 
graining of W1 (i.e., WI <-- W2), then if d is such that WI is d-consistent (i.e., 
d e ~wt), then We is d-consistent, too (i.e., d ~ ~wz), and hence Wl ----- W2 
implies that ~w~ C_ ~w2. 

4. S E M A N T I C  VALUES IN C O N S I S T E N T  H I S T O R I E S  

4.1. Real izable  Proposi t ions  

We come now to the main task of the paper: to formulate precisely the 
idea that a second-level proposition like (c~, p) ("the probability of  the history 
proposition cL being true is p")  has a meaning only in the context of  a window, 
and has a semantic value that belongs to some logical structure associated 
with that w indow- - in  particular, we anticipate that a semantic value can be 
identified with a sieve on the window. 

Let us start by considering what is necessary for a proposition (c~, p) to 
have any meaning at all in the context of  a particular window W and for a 
given decoherence function d. Perhaps the simplest position to adopt here is 
that in order to be able to 'realize'  r in the context of W, the history proposition 
r must belong to the Boolean algebra W, and W must be d-consistent. 22 This 
suggests the following definition: 

Definition 4.1. A proposition ct ~ ~ is d-realizable in a window W 
if  (i) W is d-consistent and (ii) r ~ W. 

Then 

Rd(W):= { o t l W ~ d a n d o t  ~ W }  = { W  if  W ~  d 
otherwise (4.1) 

is the set of  all 23 propositions that are d-realizable in W. 

:2Of course, it could be that d(ct, ct) = 0, but the statement that the state of affairs described 
by the history proposition et has zero probability is still a positive prediction about the universe. 

23This definition has the property that even the 0 and I history propositions are deemed not 
to be d-realizable in a window that is not d-consistent. Of course, this does affect the fact 
that, for all d E ~, d(0, 0) = 0, d(0, l) = 0, and d(l, l) = I. 
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Continuing to reason in this heuristic way, we could argue next that 
even if a window W0 is not d-consistent, the proposition (ct, p) still has a 
meaning at stage W0 provided that a coarse-graining W of W0 exists in which 
ot is d-realizable. However, there may be many such coarse-grainings: and 
the focal idea of this paper is that this should be reflected by assigning an 
appropriate semantic value to (oL, p ) - - in  the present case, a natural choice 
would be the set of all coarse grainings of Wo in which r is d-realizable [on 
the assumption that d(ct, et) = p; if not, the semantic value is deemed to be 
the empty set]. In other words, we tentatively assign to the second-level 
proposition (or, p) the semantic value at stage W0 defined as 

( {WCWolW~28dande t  E W} if d(ct, oO=p 
Vdwo((~ P)) :-- - otherwise 

(4.2) 

which would make sense provided that the set of all such semantic values 
belongs to some logical algebra. 

However, this assignment does not work in the way we have been 
anticipating because the right-hand side of (4.2) is generally not a sieve on 
Wo [because if W belongs to Vd0((ct, p)), then any W' C W with ct ~ W' 
will not]. Thus we cannot identify the set of possible semantic values at a 
stage W0 with the Heyting algebra of the space of sieves on W0. In itself this 
does not rule out the use of (4.2) but it implies that any logical structure on 
the set of semantic values must be obtained in a way that is different from 
our anticipated use of the topos of varying sets Set ~. One possibility is 
sketched in Appendix A. 

4.2. Accessible Propositions 

The problem with the semantic value Vdo(Ct, p) suggested in (4.2) can 
be seen from a somewhat different perspective by noting that R a := {Rd(W), 
W ~ 28} does not define a proper varying set over 28. This is because 
increasing the size of the window W (i.e., fine-graining it) increases the 
number of propositions contained in W--which suggests that W2 C W~ 
implies Rd(W2) C Rd(W1)--but it decreases the chances of d-consistency-- 
which suggests that W2 C Wl implies Rd(w3) D Rd(wo. The net effect is 
that if W1 -< WE there is no obvious relation between Rd(wo and Rd(w2) and 
hence no obvious candidate for the collection of maps R~lw2: Rd(wo 
Rd(W2) that is necessary for R d = {Rd(W), W ~ 28} to be a varying set. 

Note that a genuine varying set can be obtained by the simple expedient 
of replacing the condition et ~ W in (4.1) by ct ~ W. This gives rise to a 
new concept: namely of a proposition ct being 'unrealizable,' but this is not 
what we are seeking and therefore further discussion is relegated to Appendix 
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B where it  serves as a particularly simple example of what is meant by an 
object in the topos Set ~. 

Evidently a new idea is needed of what it means to say that a proposition 
tx is 'realizable' in a window W. On reflection, do we really require that ot 
actually belongs to W? Surely it suffices that W can be extended (i.e., fine- 
grained) to a bigger d-consistent window that does contain or? 

This new concept differs subtly from the earlier version of 'realizability' 
and the terminology should reflect this. We are thus lead to introduce a new 
family of second-level propositions of the form "or is d-accessible" where et 
E ~ .  As with the second-level propositions (oL, p), there is no reference 
to windows per se, and I shall indicate this by referring to propositions of 
this type as global. However, the key idea we wish to develop is tha t - -as  
hinted above in the example of d-realizability--in order to interpret a global 
proposition within the framework of the consistent-histories program it is 
first necessary to 'localize' it by constructing secondary versions that do 
refer to windows (cf. (4.2)). Then we can introduce the notion of the 'semantic 
value at a stage W~ of the global proposition, and we find that it does indeed 
lie in a Heyting algebra. The aim is to use the topos-theoretic ideas discussed 
earlier so that, in particular, the Heyting algebra appropriate to a stage W0 
is the set l)(W0) of sieves on W0 in (~ ,  ---<). 

We begin with the following definition of  the 'localized' version of the 
new family of global propositions "et is d-accessible," denoted {et, Ad). 

Definition 4.2. A proposition et ~ ~ is d-accessible from a window 
W if there exists W'  _~ W such that (i) oL E W'; and (ii) W' is d-consistent 
(i.e., ot is d-realizable in W'). 24 Then 

Ad(w) := {txlqW' D W s.t. W' E ~d  and et E W'} (4.3) 

is the set of all propositions that are d-accessible from W. Note that this can 
be rewritten as 

Ad(W) = {otl3W' D Ws.t. ot E Rd(w')} (4.4) 

where Rd(W) was defined in (4.1). Thus a proposition ot is d-accessible from 
a window W if and only if there exists some fine-graining W' of  W in which 
ot is d'realizable. 

The following properties of these sets are crucial for our purposes. 
1. If Wt --< W2 then Ad(WO C_ Ad(W2) (because coarse-graining preserves 

the property of d-consistency), and hence, unlike the case for R d, the collection 
d . A d := {Ad(W), W e ~}  is a genuine varying set over (~ ,  <--) with Awtw 2. 

Ad(WO --~ Ad(w2) defined simply as subset inclusion. In this sense, 'accessibil- 

24 Note that this implies that W itself must be d-consistent--no propositions are accessible from 
a non-d-consistent window. 
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ity' works while 'realizability' fails. As we shall see, this new object A d in 
Set ~ is the crucial ingredient in my topos-based semantics for interpreting 
the second-level propositions (or, p) in the consistent-histories program. 

2. The varying set A d is a subobject of the constant varying set A ~  
in Set B, 

A~ := ~ for all W E 9~ (4.5) 

Hence there is a characteristic morphism xad: A~ --> 1) in the topos Set ~ 
which, according to (2.21), is defined at any stage W0 by (cf., (2.8)) 

A d . 
• A ~ ' ( W 0)  ---> ~(W0) 

et ~ {W-- W01t~ ~ Ad(W)} (4.6) 

= {WC_ W o l 3 W ' D  Ws.t. W' e ~ d a n d  ot ~ W'} 

where, as can readily be checked, the right hand side is a bonafide sieve on W0. 
The sieve on the right hand side of (4.6)--which actually belongs to 

the subject l)d(Wo) of 12(W0)--is interpreted as the semantic value at the 
stage W0 of the global proposition "or is d-accessible." Note that, by the 
property (2.22) of a characteristic morphism, a history proposition a is d- 
accessible from a window W if and only if 

X~,(a) = ]'(W) (4.7) 

where "I'(w) = { W' ~ ~ I W--< W' } is the unit 1 of the Heyting algebra I)(W). 
The definition (4.6) of X mr" A 6 ~  ----) ~'~ and property (4.7) illustrate the 

essentially 'fuzzy' nature 25 of subobjects in Set ~. More precisely, if ot is d- 
accessible from W then • = 1; but even if ot is not d-accessible from 
a window W0, the proposition (et, A d) is still ascribed a semantic value at 
stage W0 that is generically not the null element 0 (the empty sieve) of the 
Heyting algebra ~(W0): namely, the set of all coarse-grainings W of W0 from 
which ot is d-accessible. Thus the semantic value at stage W0 of the global 
proposition "a  is d-accessible" reflects the extent to which W0 needs to be 
changed in order that et does become d-accessible from it. Hence coarse- 
graining a window is the analogue in the consistent-histories theory of choos- 
ing a later time in the example of sets-through-time discussed earlier (compare 
(4.7) with (2.9)). 

A key role for l)  is to impart a logical structure to the collection of all 
global propositions, and the first step in this direction is to note that (4.6) 
can be used to define for each ot ~ ~@ (and for given decoherence function 
d) what is known in the topos literature as a global element of the object 

25This is not a coincidence: fuzzy set theory can be viewed as a sub-branch of topos theory. 
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f~, i.e., a morph i sm 1 ---) f~ in Set m where 1 is the terminal object  26 in Set m 
defined by I (W) :=  {* } (the set with one element)  for all W ~ ~ .  Specifically, 
for each cx E ~ we define ~ad(a): 1 ~ f l  by specifying its components  
~d(C0W0: I(W0) --+ 12(Wo) to be 

A d 
,~Aa(Ot)W0(*) :=  Xwo(OO (4.8) 

where  the right hand side is given by  (4.6). In turn, this produces a map  27 

~Aa: ~ @  ---) Himset~(1, ~ )  (4.9) 

where Homs~t~(l,  ~ )  denotes the set o f  morph i sms  f rom 1 to ~ in the topos 
category Set m. 

By these means,  to each global proposi t ion (a ,  A a) we can associate a 
corresponding 'va lua t ion '  morph i sm 

V(ot, AS:  1 ----) ~ (4.10) 

where  V(a, A a) :=  ~aa(ot) is a global e lement  of  12; i.e., V is a map  f rom 
global proposit ions to global elements.  In normal  set theory, a map  f rom {* } 
(the terminal object  in the category of  sets) to a set X picks out a unique 
element  of  X, and (4.10) can be regarded as the analog of  this procedure in 
the category Set ~ of  varying sets. Thus (4.10) encapsulates the idea that in 
our topos interpretation of  the consistent-histories formalism,  a 'general ized 
truth value '  is associated to each global proposi t ion (c~, A a } - - n a m e l y  the 
global e lement  V(a, Ad}: 1 ~ 12 of  12. 

Referring to (4.10) as a 'valuat ion '  seems to imply that it preserves  
some logical structure on the proposit ions (a ,  Aa). However ,  we  do not have 
any such structure a priori: rather, the intention o f  (4.1 0) is to use the Heyt ing 
algebra structure of  12 to define a logical a lgebra on the global proposit ions 
(a ,  A a } - - a  goal that can be achieved by associating each such second-level  
proposi t ion with the corresponding global e lement  of  ~ .  For  example ,  if  
V(et, Aa): 1 ---> 12 and V(13, Aa): 1 ~ 12 are global e lements  o f  12 corresponding 
to the global proposit ions (et, A a} and {[3, A a) respect ively then the global 

26An object 1 is said to be a terminal object in a category if there is just one morphism from 
any other object to 1; it is easy to see that any two terminal objects are isomorphic. In the 
category of sets a terminal object is any set {*} with just a single element. In this case a 
morphism is just a map, and hence a morphism {*} ---) X picks out a unique element of X. 

27 3R We are exploiting here the fact that the constant presheaf functor A: Set ---) Set is left adjoint 
to the 'global sections' functor F: Se( ~ --~ Set where, for any object F in Set ~, we have FF 
:= Homs~t~(1, F). This adjointness relation gives rise to a natural isomorphism 
Homsct~(AS, F) = Homs~t(S, FF) for any set S. In our case the set S is ~ and the functor 
F is ~;  thus the isomorphism of interest is Homset~(A~ ', .~) ~ Homs~t(~ ', Ff~). The 
element in HomseF~(A~ ~)  with which weare concerned is X A and its image in Homset(~ 
FE~) is what we have denoted ~a". Thus ~aU(c0 e FE~ = Homset:~(l, ~).  
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proposition "(ct, A d) and ([3, Ad) '' is associated 28 with the global element of 
f~ defined by the chain 

<V(ot,Ad),v(f~,Ad)> A 

1 > f~ X f~ ---> f~ (4.11) 

where A : ~ X fl  --~ 1) is the 'and' operation in the Heyting algebra structure 
on 1~. This is a rather sophisticated analog of the treatment of (a, p) A (13, 
q) by the expression (2.5) in the context of our earlier discussion of second- 
level propositions in a classical theory. 

Note however that the map ~( Ad in (4.9) is not one-to-one, and hence 
neither is the valuation map (~, A a) ~ V(ot, A 't) that associates a global 
element of 1~ with each (a, Aa). Thus--analogous again to our discussion 
in section 2.1 of classical second-level proposi t ions--we are led to define 
two global proposition as being d-semantically equivalent if they are associ- 
ated with the same global element of 1~ (with a given decoherence function 
d): properly speaking, it is only to the equivalence classes of such propositions 
that the logical algebra applies. 

For example, although in the construction (4.6) the quantity A~ is 
regarded purely as a set and the orthoalgebra structure plays no a priori role, 
nevertheless--since W is a Boolean subalgebra of  ~ - - i f  ct e W then -~ct 

W and vice versa. Hence ot ~ W if and only if ~ot ~ W, which implies 
that, for all ct e ~ ,  

A d A d 
• = Xwo(-~et) (4.12) 

Thus (or, A d) and (-~ct, A d) are d-semantically equivalent 29 for any ct E ~ 
and for all decoherence functions d. 

4.3. The Semantic Values for (a, p) 

Finally we are in a position to treat the main goal of the paper, namely 
propositions of the type (a, p ) - - " the  probability of history proposition 
being true is p." All we have to do is to supplement the requirement of  d- 
accessibility with the additional condition d(a, a)  = p. Thus I propose to 
interpret the global proposition (a, p) by specifying it to have the following 
'localized' form: 

Definition 4.3. The proposition (ct, p) is d-accessible from a window W 
if (i) ct is d-accessible from W; and (ii) d(ct, ct) = p. 

:SNote that "(et, A d) and (13, Ad) '' is not itself of  the form (~/, A d) for any ~/ ~ ~ .  It is thus 
more accurate to think of  the propositions (ct, Ad), et E ~ '  as the sentence letters of  a formal 
language whose sentences are constructed with the aid of the usual logical connectives. 

29I am grateful to Pen Maddy for the gnomic remark that this conclusion is consistent with 
proposition 4.0621 in Wittgenstein's Tractatus. 
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Let Ad~(W) denote the set of all propositions o t e  ~ such that (or, p) 
is d-accessible from W: 

Ad,p(w) 

�9 = {etl3W'_D Ws . t .W '  e ~d, e t e  W' ,andd(c t ,  ct) = p }  (4.13) 

These sets obey the basic condition Wl --< W2 implies Ad'p(w1) C Ad'p(w2) 
and hence, for each p e [0, 1], A d'p := {Ad'p(w), W e ~}  is a varying set 
over ~ .  

The varying set A d'p is a subobject of the constant varying set A ~ ,  
and hence for each decoherence function d (an analog of the state cr that 
arises in (2.3)) and each p e [0, 1] we get the crucial characteristic morphism 
xd'P: AO~ "~ ---) ~'~ in Set ~ whose components are the maps X~: A~ -> 
~(Wo), Wo e ~ ,  defined by 

dp 

�9 = ~{W C_ Wol3W'~_ Wwith W' e ~d  and o r e  W'} if d(a, et) = p 
otherwise 

(4.14) 

The topos result (4.16) should be compared with the simple expression 
(2.4) that applies in a more conventional probability theory. Once again we 
see the 'fuzzy-set' nature of the topos scheme in the sense that at any particular 

if d(et, oO = p 
otherwise 

(4.16) 

The right hand side of (4.14) is a genuine sieve and is to be regarded as the 
semantic value at stage W0 of the global proposition (or, p) "the state of 
affairs represented by the history proposition o t e  ~ has probability p 
of occurring." 

As was the case with (or, Ad), the global proposition (or, p) can be 
associated with a global element ~d,p(a): 1 --~ ~ whose components 
~(d'P(ot)wO: l(Wo) --> f~(Wo) are defined as )(d'P(oL)Wo(~) :> x~cPo(~). Putting 
together these various results we finally arrive at the desired 'valuation 
morphism' 

v~(o,,p>: l ~ f~ (4.15) 

whose components Vd(et, P)wo: l(W0) ---> f~(Wo) are given by 

Vd( ct, P)wo(*) 

={~WC_WolgW'D_Ws. t .W'  e ~ d a n d e t e W  ') 
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stage W0 the prol~osition (a, p) may be assigned a semantic value other than 
0 := 0 or 1 := T(W0). 

As in the earlier example of the second-level propositions (or, Aa), it is 
appropriate to define two global propositions (a, p) and ([3, q) to be 'd- 
semantically-equivalent' if they are associated with the same global element 
of II ,  i.e., if their semantic values are equal in all windows. For example, it 
is clear from (4.16) that, for all decoherence functions d, the second-level 
propositions (a, p) and (--,or, 1 - p) are d-semantically equivalent for all a 
E ~ and all p ~ [0, 1]. This is because if cx belongs to some window W' 
then so does ~ .  Furthermore, if W' is d-consistent then d(cx, --,a) = 0 and 
hence, by additivity of the decoherence function d, 

1 = d(1, 1) = d(c~ G ~a,  ot �9 ~o~) = d(cx, or) + d(-~a, -~a) (4.17) 

which shows that d(--,ot, " a )  = 1 - d(a, a). 
By these means, the (equivalence classes of) elements of the formal 

language generated by global propositions of the type (or, p) can be associated 
with elements of a logical algebra that is identified as a subalgebra of the 
Heyting algebra on the set Homset:~(1, l-l) of global elements of fI  in Set ~. 
The expression (4.15)--with its component version (4.16)--represents the 
final form of our analysis of the logical structure of the consistent-history 
propositions "the probability that a ~ ~ is realized is p" in the context of 
topos theory. 

5. CONCLUSIONS 

A key ingredient in the consistent-histories formulation of quantum 
theory is the existence of d-consistent sets of propositions. We have argued 
that, in the approach where a preferred set is not  selected once and for all, 
the ensuing many-world-views semantics can be described mathematically 
with a topos-theoretic framework based on the idea of sets varying over the 
partially ordered set 2~ of all nontrivial Boolean subalgebras of the orthoalge- 
bra of history propositions. In particular, we have seen how a global proposi- 
tion such as "the probability of the history proposition cx being true is p" can 
be interpreted in a way that identifies any window W0 e 9~ as a potential 
'stage' and where the semantic values at each such stage lie in a Heyting 
algebra. This situation stems from the central claim that each global proposi- 
tion can be identified with a global element 1 ---> f l  of the space l-I of semantic 
values in the topos category Set ~. Propositions of this type in the consistent- 
histories program include (a, Ad), (~, p),  and (as discussed in Appendix 
B), (a, Ua). The collection of d-semantic equivalence classes of all 3~ such 

3~ propositions--for example, "(et, U d) and (f3, p)"--are allowed. 
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propositions generates a logical structure that is inherited from that of l~. It 
should be emphasized once more that, in practice, the space ~ may simply 
be the set of projection operators on some Hilbert space, in which case the 
analysis of the crucial poset ~ is a viable concrete task. 

The general conclusion of this paper is that topos methods provide a 
natural mathematical framework in which to discuss the inner logical structure 
that lies behind ideas of many windows, or world views, in the quantum 
theory of histories. One general aim of this approach is to avoid the instrumen- 
talism that dominates much conventional thinking about quantum theory, 
although--as is frequently the case--it is difficult to give a simple physical 
picture of what the formalism means in these circumstances. However, if we 
accept the idea that 'classical realism' is associated in some way with a 
Boolean algebra of propositions, then we have to say that--because of its 
intrinsic Heyting algebra logic--the 'many-windows' interpretation of the 
decoherent-histories formalism corresponds to a type of neorealism that, on 
the one hand, is more complicated and subtle than the simple realism of 
classical physics, but which, on the other hand, does not go as far as the 
nondistributive structure that characterizes quantum logic proper. Of course, 
this does not affect the fact that the underlying orthoalgebra ~ of history 
propositions is a genuine quantum logic. 

In the context of 'many world-views' it is worth noting that the concept 
of a proposition being 'd-accessible' from a window W clearly extends to 
Boolean subalgebras in general: i.e., we can say that a window W' is d- 
accessible from a window W if there exists a d-consistent window W" that 
contains both W' and W; a single proposition ct is then d-accessible from W 
in the sense of (4.3) if and only if the window {0, 1, ct, -~et } is d-accessible 
from W in the sense just described. However, this is just the consistent- 
histories analogue of the idea of 'relative possibility' introduced by Kripke 
(1963) in his original study of the semantics of intuitionistic logic (see 
also Loux, 1979). This suggests that modal concepts such as 'necessity' or 
'possibility' should find a natural home in the quantum formalism of consis- 
tent histories after making the shift from Kripkean 'worlds' to 'windows'; 
but this remains a topic for future work. 

The topos-theoretic ideas used in the present paper are rather elementary, 
being essentially restricted to the theory of presheafs on a poset, and there 
is a lot more to the subject than that. However, even at the simple level of 
the theory of varying sets it seems clear that the ideas discussed here could 
find applications in other areas of quantum theory where some type of 
contextuality arises. An example might be the idea of 'relational quantum 
theory' that has been actively developed recently by several authors (for 
example, Crane, 1995; Smolin, 1995; Rovelli, 1997). It also seems possible 
that the well-known contextuality of truth values in standard quantum theory 
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(i.e., the Kochen-Specker theorem) could be explored profitably from this 
perspective. 

A P P E N D I X  A.  A N  A L T E R N A T I V E  A P P R O A C H  

I shall sketch here a method whereby it is possible to assign the set 
[cf. (4.2)1 

Fa(Wo) := {WC WolW e ~dandot  e W} (A.1) 

as the semantic value at stage W0 of the global proposition (a, p) [on the 
supposition that d(a, a) = p] even though the right-hand side of (A. 1) is not 
a sieve on W0 in (2~, --<). 

The first observation is that--assuming for simplicity that d(a, ~x) = p 
and d(13, 13) = q - - i f  Fd(w0) and F~(W0) were to be the semantic values of 
propositions (o~, p) and (13, q), respectively, at stage W0 then the global 
proposition "(a, p) or ([3, q)" would presumably be represented at stage Wo 
by the set 

F (W0) u r (Wo) 

= {WC_ W o l W e  ~ a , ~  e W} U { W C _ W o l W ~  ~a,f~ e W} 

= { W C  WolW e ~dand (a e Wor13 e W)} 

= { W C W o l W e  ~dand {a, [3} n w4 : f l}  (A.2) 

Since the right-hand side of (A.2) is not itself of the form Fa(W0), we 
do not have algebraic closure. However, the structure of (A.2) is suggestive 
and leads to the idea of defining the 'trapped' sets 

T~(Wo) := { W C W01W e ~a  and F n w 4:01 (A.3) 

where F is any finite set of propositions from ~ .  Note that Fa~(W0) - 
Tf j(Wo). 

The collection of all such sets is closed under the union operation since 

Ta (Wo) U Td(Wo) = TaFuc(Wo) (A.4) 

although under intersections we have 

Td(Wo) n Tac(Wo) = 

{ W C  WolW e ~dand (F n W4: 0 & G  n Wv ~ 0)} (A.5) 



Topos Theory and Consistent  Histories 811 

Closure can be reestablished by defining the collections of subalgebras 

TaF ,, Fz..., F,,( Wo) 

= { W C  WolW �9 Bdand(Fl  n W e  O & F z  O W--/: 0 . . . . .  

& Fm n W 4: 0)} (A.6) 

where F1, Fz . . . . .  F,,, is any finite collection of finite sets of  propositions 
in ~@. 

A simple way of using these sets to generate a logical algebra follows 
from the following observation. There is a well-known topology (the Vietoris 
topology) that can be placed on the set of all closed subsets of a topological 
space and which involves trapping sets, rather as in (A.3). Motivated by what 
is done in the Vietoris situation, the natural procedure in our case is to define 
a topology "rd on ~ by taking as a subbasis the collection of all sets of the 
form TaF(W) as F ranges over all finite subsets of ~@ and W ranges over 
all nontrivial Boolean subalgebras of ~ The open sets of the topological 
space (~ ,  "ra) can then serve as the semantic values of our system. 

Notice that this procedure does indeed produce a logical structure since 
the collection of open sets in any topological space is always a Heyting 
algebra. However, this is rather far from our original idea of presheafs on 
the partially ordered set (~ ,  <-) and needs to be treated as a separate theory. 

APPENDIX B. UNREALIZABLE PROPOSITIONS 

The 'localized' form of a new, and rather simple, global proposition "or 
is d-unrealizable" (denoted (or, Ua)) is given by the following definition. 

Definition 2.1. A proposition (x �9 ~ is d-unrealizable in a window 
W if (i) W is d-consistent and (ii) ot ~ W. 

Thus we can define 

u d ( w )  := {o~lW E ~d  and ot ~ W} = {~ - W  if W E ~ d  
if W ~ ~ d 

(B.l) 

as the set of all propositions 31 that are d-unrealizable in the window W.. We 
note that: 

1. If Wi < W2, then u d ( w o  C_ ud(W2) and hence, unlike the case for 
R a, the collection U d := { Ud(W), W e ~ } is a genuine varying set over the 

d " U d ( W l )  ---) u d ( w 2 ) ,  W 1 < W2, are defined poset (~ ,  <-) if the maps UWIW2. 
to be the subset inclusions. 

3 J Note that, according to this definition, the 0 and I history propositions are never d-unrealizable. 



812 lsham 

2. The object U d in Set ~ can be regarded as a subobject of the constant 
varying set A~ in Set ~. The associated characteristic morphism is 

ud. A ~ ( W o )  --> f~(Wo) XWo" 

a "0 { W  > -- Wolet E Ud(W)}  

= {WC_ W01We ~ d a n d a  ~ W} (B.2) 

As was the case with (a, Aa), the new global proposition (or, U a) can 
be associated with a global element of the Heyting algebra fI  via the morphism 

~ud(ot): 1 ---> fI  (B.3) 

whose components are defined by ~Ud(O0w0(*) := • [cf. (4.8)]. There 
is an associated valuation morphism V(ot, Ua): 1 ---> D~ where V(a, U a) := 
~Ua(ot). We also note that, analogously to (4.12), 

U d U d 
• = XWo('-'oO (B.4) 

for all windows W0 and all o t e  ~ Thus (a, U a) and (~a,  U a) are d- 
semantically equivalent for any a e ~ '  and for all decoherence functions d. 

Finally we remark that one might have tried to use these results to 
resolve the 'realizability' problem by defining a proposition e~ e ~ to be 
d-realizable in a window if it is not d-unrealizable there. This involves taking 
the negation 32 of the variable set U d in the appropriate Heyting algebra of 
subobjects of the constant variable set A~ The result is the variable set 
- ,U a := {-~Ud(W), W e ~} ,  where 

' l u d ( w )  -~ { o t l V W '  ~ W, ot ~ u d ( w t ) }  

= {otlVW' C W, W' ~t ~ a o r  c~ e W'} (B.5) 

However, this does not seem to capture at all what we instinctively want 
to be true for a 'realizable' proposition and the definition given in the text 
seems far more appropriate. 
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