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A major problem in the consistent-histories approach to quantum theory is
contending with the potentially large number of consistent sets of history
propositions. One possibility is to find a scheme in which a unique set is selected
in some way. However, in this paper the alternative approach is considered in
which all consistent sets are kept, leading to a type of ‘many-world-views’ picture
of the quantum theory. It is shown that a natural way of handling this situation
is to employ the theory of varying sets (presheafs) on the space B of all nontrivial
Boolean subalgebras of the orthoalgebra U%P of history propositions. This
approach automatically includes the feature whereby probabilistic predictions are
meaningful only in the context of a consistent set of history propositions. More
strikingly, it leads to a picture in which the ‘truth values’ or ‘semantic values’
of such contextual predictions are not just two-valued (i.e., true and false) but
instead lie in a larger logical algebra—a Heyting algebra—whose structure is
determined by the space & of Boolean subalgebras of UP. This topos-theoretic
structure thereby gives a coherent mathematical framework in which to understand
the internal logic of the many-world-views picture that arises naturally in the
approach to quantum theory based on the ideas of consistent histories.

1. INTRODUCTION

The consistent-histories approach to standard quantum theory was pio-
neered by Griffiths (1984), Omnes (1988a-c, 1989, 1990, 1992), Gell-Mann
and Hartle (1990a,b), and Hartle (1991, 1995) and was motivated in part by
a desire to find an interpretation of quantum theory that is less instrumentalist
than is that of the standard ‘Copenhagen’ view. Such a move is particularly
desirable in the context of quantum cosmology, where any reference to an
‘external observer’ seems singularly inappropriate. At a more technical level,
the consistent-histories scheme provides an attractive framework in which
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to develop any views on quantum gravity where the microstructure of space-
time itself is deemed to be the subject of quantum effects. In particular,
questions about the probabilities of various ‘generalized’ space-times being
realized in the universe are difficult to pose and analyze in the more traditional
approaches to quantum theory.

The central idea in the consistent-histories scheme is that (i) under
certain conditions it is possible to assign probabilities to history propositions
of a system rather than—as in standard quantum theory—only to propositions
concerning properties at a fixed time; and (ii) these probabilities refer to ‘the
way things are’ in some—as yet rather problematic—sense rather than to
the results of possible measurements made by an observer from outside the
system. A key ingredient in the theory is the ‘decoherence function’—a
complex-valued function d(o, B) of history propositions a, (3 that measures
the ‘quantum interference’ between them. A complete? set of history proposi-
tions C := {o, ap, . . ., o,} is said to be (strongly) d-consistent if d(a;, o))
= ( for all i # j, and under these circumstances the probability that o; will
be realized is identified with the real number d(a;, o;) (the formalism is such
that these numbers always sum to 1 in a consistent set).

Whether or not this scheme really answers the interpretational questions
in quantum theory has been much debated; see, for example, Halliwell (1995),
Dowker and Kent (1995, 1996), and Kent (1996). The central problem is the
existence of many d-consistent sets that are mutually incompatible in the
sense that they cannot be combined to give a single larger set. An analogous
situation arises in standard quantum theory, but there the problem is resolved
by the ubiquitous external observer deciding to measure one observable rather
than another. However, this option is not available in the history framework
and the problem must be addressed in some way that is internal to the
theory itself.

A priori there are two quite different ways of approaching this plethora
of d-consistent sets. The first is to try to select a unique set that is ‘realized’
in the actual physical world. Such an approach is typical of those versions
of the ‘many worlds’—or, in some views, ‘many minds’—interpretation® of
standard quantum theory in which a preferred basis in the Hilbert space of
states is used to select one special branch.

The second option is to accept the plethora of d-consistent sets as a new
type of many-worlds or, perhaps better, ‘many-world-views’ interpretation
of quantum theory. We shall show how the mathematical structure of the
collection of all complete sets of history propositions can be exploited to

2A set of history propositions is complete if (i) the physical realization of any one of them
necessarily excludes all the others; and (ii) one of them must be realized.
3For a recent review see Butterfield (1995).
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provide a novel logic with which to interpret the probabilistic predictions of
the theory in the many-world-views context where all d-consistent sets are
treated on a par. This involves a type of logical algebra in which probabilistic
propositions are (i) manifestly ‘contextualized’ to a complete set (which need
not necessarily be d-consistent) and (ii) not simply binary-valued (i.e., not
just true or false). However, this algebra is not a ‘quantum logic’ in the usual
sense of the phrase since it is distributive. On the other hand, it is not
a simple classical Boolean algebra either; rather, it is an example of an
‘intuitionistic’ logic.

Of course, the idea that probabilistic assertions must be made in the
context of a d-consistent set is not new—the theme has run through the entire
development of the consistent-histories program and, in particular, has been
reemphasized recently by Griffiths (1993, 1996). However, allowing the
context to be a general complete set and, more dramatically, the use of a
‘multivalued’ logic are new departures—although, as I hope to show, they
follow naturally from the mathematical structure of the consistent-histories
formalism. Indeed, the basic idea is easy enough to state, although its ramifica-
tions lead at once to concepts drawn from the sophisticated branch of mathe-
matics known as ‘topos* theory.’

To see how topos ideas arise, suppose that C is a complete set of history
propositions that is not d-consistent: what would be the status of a probabilistic
prediction made in this context? One response is “none at all,” but a more
physically appropriate observation is that even if C is not itself d-consistent,
it might admit a coarse-graining C’ (i.e., a set of propositions, each of which
is a sum of propositions in C) that is d-consistent and in which, therefore,
the probabilistic prediction is meaningful; in other words, by agreeing to use
less precise propositions, we may arrive at a situation where probabilities
can be assigned meaningfully. However, we then note that (i) any further
coarse-grainings of C’ will also be d-consistent and (ii) there may be many
such initial choices C’ and the same holds for further coarse-grainings of
any of them. In the language of topos theory this is expressed by saying that
the collection of all d-consistent coarse-grainings of C forms a sieve on C
with respect to the partial ordering induced by coarse-graining. The main
idea is to assign this sieve as the ‘truth value’—or, perhaps better, the
‘meaning’ or ‘semantic value’—of a proposition in the context of C. The
crucial fact that underpins this-suggestion is that the set of all such sieves
does indeed form a logical algebra, albeit one that contains more than just
the values ‘true’ and ‘false.’

The natural occurrence of sieves in the consistent-histories scheme is
the primary motivation for claiming that topos theory—especially the theory

4 A topos is a special type of category. The relevant details are given further on in this paper.
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of sets varying over a partially ordered set—is the natural mathematical tool
with which to probe the internal logic of this particular approach to quantum
theory. Fortunately, for our purposes it is not necessary to delve too deeply’
into this—rather abstract—branch of mathematics, and to facilitate the expo-
sition the paper starts with a short summary of some of the relevant ideas
about varying sets. This is followed by a discussion of the crucial poset®
of all nontrivial Boolean subalgebras of the quantum algebra of history
propositions. Then comes the heart of the paper, where the appropriate sets
of semantic values for propositions in the consistent-histories program are
investigated. Some less central technical material is relegated to the
appendices.

2. THE TOPOS OF VARYING SETS
2.1. Second-Level Propositions

We begin with the simplest of remarks. In standard set theory, to each
subset A of a set X there is associated a ‘characteristic map” x*: X — {0, 1}
defined by

1 if xeA
X0 = {0 otherwise @D
so that
A =M1} (2.2)

Conversely, any function x: X — {0, 1} defines a unique subset A, := x {1}
of X whose characteristic function is equal to x.

Next, consider a hypothetical classical theory whose basic ingredient is
a Boolean lattice UP of propositions about the physical universe.” A ‘pure
state’ o of the system will give rise to a valuation on UP, i.e., a homomor-
phism V°: UP — () from UP to the simplest Boolean algebra ) := {0, 1}
with ‘0’ interpreted as ‘false’ and ‘1° as ‘true.” Thus a valuation is a character-
istic map that is also a homomorphism between Boolean algebras.

Now let us consider what a probabilistic version of such a theory might
look like. In theories with a realist flavor—as is, arguably, the case with the
consistent-histories program—there is a temptation (to which I shall succumb)
to interpret probability in the sense of ‘propensity’ rather than in terms

51 have deliberately avoided any serious use of category language in the main text of the paper,
but have added some more technical remarks in the footnotes.

5The word ‘poset’ is an abbreviation for ‘partially ordered set.’

7By ‘universe’ I mean the physical world with all its spatiotemporal aspects. Thus we are
talking about ‘generalized histories,” not states of affairs at a fixed time.
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of (intersubjective) states of knowledge or relative frequency in repeated
measurements. In particular, the proposition “a € UP is true with probability
p” (to be denoted by (o, p)) is to be read as saying that the state of affairs
represented by a has an ‘intrinsic tendency’ to occur that is measured by the
number p & [0, 1]. Thus {a, p) is to be construed as being about the universe
‘itself” in some way rather than, in particular, our knowledge of the universe
or the results of sequences of measurements. A proposition of this type will
be labeled ‘second-level’ by which I mean simply that it is a proposition
about the universe that itself involves a proposition a € UP.

At a mathematical level, we observe that to each probability measure
i on UP (a ‘statistical state’ of the system) and for each p e [0, 1] there
is associated the subset of all @ € UP such that w(a) = p. In turn, this
gives rise to the characteristic map x*”: UP — {0, 1} defined by

_[1 i pe=p
X () = {0 otherwise 2.3)

as a particular example of the situation represented by (2.1).

Note that the characteristic map in (2.3) is not a valuation on UP—no
role is played by the Boolean structure on U%P, which, in this situation, is
regarded purely as a set. On the other hand, we can think of the second-level
propositions {a, p) as generating a new logical algebra with respect to which
each measure . on UP produces a genuine {0, 1}-valued valuation V*
defined by

1 i pe=p
V(e p) 2= {0 otherwise 24

Thus, for example, the conjunction operation on these new propositions is
defined® to be such that, for all .,

Voo p) A (B, @) 1= {(1) f @ =padp®=a o5

This leads naturally to the idea of two second-level propositions being -
equivalent if their V* valuations are equal, and semantically equivalent if

8More formally, the second-level propositions {c, p) can be viewed as the sentence letters of
a formal language whose sentences are defined recursively by the operations of conjunction,
disjunction, and logical implication. The {0, 1}-valued function V* on the set @ of sentence
letters is then extended inductively to the set @ of sentences through successive applications
of rules of the type exemplified by (2.5); see Goldblatt (1984) for further discussion of this
way of looking at things.
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they are p-equivalent for all measures . For example, for all p. and all p
e [0, 1] we have

Vi(a, p)) = V¥((Ta, 1 = p)) (2.6

since w(a) + w(—a) = 1 for all @« € UP. Hence (e, p) and (", | — p)
are semantically equivalent for all p € [0, 1]. A more complex example is
given by the result that, for any disjoint propositions « and 3 (i.e., « A B = 0),

Vi(a v B, p) = V“(qe\[él] (o, p — @) A (B, 6I>) 2.7

which arises from the fact that p(a v B) = p(a) + w(B) for any such pair
of propositions. Thus we see that, if « A B = 0, then (o v B, p) and \/,c(o.1y
(o, p — q) ~ (B, g) are semantically equivalent for all p e [0, 1].

The situation in the consistent-histories program is similar in many
respects. Once again, there is an algebra UP of ‘universe propositions,’
although—as part of a quantum theory—it is no longer Boolean. There are
also second-level propositions of the type (o, p), although the role of a
probability measure w: UP — R is now taken by a decoherence function d:
UP X UP — C. However, the really significant new features of the consis-
tent-histories theory are that (i) a proposition {a, p) is physically meaningful
only in the context of a d-consistent set (or, as we shall see, any complete
set) of histories, and (ii) as we shall show, the associated truth values, or
semantic values, can be regarded as lying in an algebra that is larger than
{0, 1}.

2.2, Sets Through Time

As an example® of how contexts and generalized semantic values can
arise, consider a fixed set X of people who are all alive at some initial time
and whose bodies are preserved once they die (and who are still referred to
as ‘people’ in that state). Thus if D(rf) C X denotes the subset of dead people
at any time ¢, then as ¢ increases, D(f) will clearly stay constant or increase,
ie., t = t, implies D(t,) C D(t,). Such a parametrized family of sets D(?),
t € R, is an example of what has been called a “set through time” by those
working in the foundations of topos theory (for example, Lawvere, 1975;
Goldblatt, 1984; Bell, 1988; MacLane and Moerdijk, 1992).

Now suppose that some members of our population are—in fact—
immortal. Suppose also that the members of X are all philosophers with a
nostalgic leaning toward logical positivism. Then what truth value should be

? A similar example has been explored by Dummett (1959) in the form of the proposition, “A
city will never be built on this spot”; I thank Jeremy Butterfield for this observation.
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assigned to the proposition “person x is mortal” if all truth statements are
required to be verifiable in some operational sense? If death has already
occurred by the time the proposition is asserted, then, of course, the proposi-
tion is true (assuming that the deadness of a body is something that can be
confirmed operationally). However, if x is alive, the proposition cannot be
said to be true—on the assumption that mortality of a living being cannot
be verified operationally—but neither can it be denied, since even if x is
numbered among the immortals, there is no way of showing this. Thus we
are led to the notion of a ‘stage of truth’ as a context in which a proposition
acquires meaning—in our case, the time t—and to the idea that the truth
values of a statement at a stage ¢ may not just lie in the set {0, 1}.

Of course, a dedicated verificationist might simply insist that the proposi-
tion “x is mortal” is meaningless if asserted at a time £, when x is not dead.
However, topos theory provides a more positive answer that stems from the
observation that there may be a later time ¢ at which x does die, and then of
course x € D(t') for all times t' = ¢. A key idea in the theory of sets-through-
time is that the ‘truth value’—or, perhaps better, the ‘meaning’ or ‘semantic
value’ —at the stage t, of the proposition “x is mortal” is defined to be the
set Xp(x) of all later times'® ¢ at which x is dead:

Xox) = {t = tlx € D(n} (2.8)

Note that if x never dies, i.e., if he or she is immortal, then the right-
hand side of (2.8) is just the empty set. On the other hand, x is dead at a
time ¢ if and only if

XP(x) = 1(2) := [t, ) (2.9)
Equivalently, at stage ¢,
D(t) = (x))"'{1(0)} (2.10

When compared with (2.2), the relation (2.10) shows that the parametrized
family of maps x2: X = Q(1), to € R—where (ty) denotes the collection
of all upper sets lying above f, (i.e., sets of the form [s, ), s = #;)—is the
analogue of the single characteristic function of normal set theory.

From a logical perspective, the crucial property of this set {}(t;) of all
possible semantic values at stage #, is that it possesses the structure of a
Heyting algebra. Thus (i) (1) is a distributive lattice under the usual set-
theoretic operations of union and intersection, and (ii) {)(t,) has the property

'0The example gets a little artificial at this point in the sense that a transtemporal view of the
history of the population X is needed for the semantic values to be appreciated: clearly a job
for one of the immortals!
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that for any a, b e () there is a unique element (a = b) e Q(f) (with
the intuitive meaning “if a, then b”) satisfying, for all ¢ € (t),

c<=(a=>0b) ifandonlyif cAa=b 2.11)

The negation operation in such an algebra is defined by —a := (a = 0), and
satisfies the relation'! @ < —™q for all a.!? Indeed, it can be shown that a
Heyting algebra is Boolean if and only if a = —7a for all a.

2.3. Sets Varying over a Partially Ordered Set

A key fact for our program is that the ideas sketched above extend
readily to the situation where the ‘stages of truth’ are elements of a general
partially ordered set % (for example, Goldblatt, 1984; Bell, 1988). In our
case, P will be the set of nontrivial Boolean subalgebras of the space of
quantum history propositions with W; = W, defined to mean W, C W, (so that
W, is a ‘coarse-graining’ of W;). The necessary mathematical development is
most naturally expressed in the language of category theory, although for
our purposes all that is really needed is the idea that a category consists of
a collection of things called ‘objects’—mathematical entities with some
precisely defined internal structure—and ‘morphisms’ between pairs of such
objects, where a morphism is a type of structure-preserving ‘map’ (but not
necessarily in the sense of set theory).

The relevant category for us is the category Set” of “varying sets over
9%.” Here, an object X is defined to be an assignment to each p € P of a
set X(p), and an assignment to each pair p = g of a map X,.: X(p) — X(q)
such that (i) X,,, is the identity map on X(p), and (ii) the relation

Xor© Xpq = Xy,
13

(2.12)

is satisfied whenever p = g < r.

A morphism m: Y — X between two such objects ¥, X in Set? is defined
to be a family of maps m,: Y(p) = X(p), p € P, satisfying the compatibil-
ity conditions'*

Mg By = Xpg°Mp (2.13)

ITA classic example of a Heyting algebra is the collection of all open sets for a topological
space X. In particular, if A is an open set, then the negation A is defined as the interior,
int(X — A), of X — A. It is clear that A C int(X — int(X — A)).

12This is one of the main reasons why a Heyting algebra is chosen as the formal mathematical
structure that underlies intuitionistic logic. Thus there is a strong connection between the
theory of sets through time and the logic of intuitionism.

31n the context of category theory, what is being exploited here is the familiar fact that a poset
P can be regarded as a category in its own right in which (i) the objects are the elements
of % and (ii) there are no morphisms p — ¢ unless p < g, in which case there is just one.
A ‘varying set over % is then just a functor from the category P to the category ‘Set’ of
normal sets. This is closely related to the concept of a ‘presheaf” on P,

4If @ is regarded as a category, then v is a ‘natural transformation’ between the functors Y
and X.
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as shown in the commutative diagram
Y
Y(p) — Y@

o o (2.14)

X,
X(p) —Z> X(q)

In particular, a subobject of a varying set'> X = {X(p), p € P} is a varying
set A = {A(p), p € P} with the property that A(p) C X(p) forall p e P,
and such that A,;: A(p) — A(g) is just the restriction of X,,: X(p) — X(q)
to the subset A(p) C X(p). These relations are captured nicely by the commuta-
tive diagram

AP‘I
A(p) —— A(g)
(2.15)

qu
X(p) —> X(g)

where the vertical arrows are subset inclusions.

A simple, but important special case is when the varying set X(p) is in
fact constant i.e., X(p) = X forall p € P, and X, is the identity map from
X = X(p) to X = X(q) for all pairs p =< g. In this situation, each set A(p),
p € P, can be regarded as a subset of the fixed set X, and the condition in
(2.15) for a varying set A := {A(p), p € P} to be a bona fide subobject of
X reduces to

p=q implies A(p)C A(g) (2.16)

This special case where X(p) is constant also gives rise to the varying-
set analogue of a ‘complement’ of a subset. The obvious family of subsets
of X to serve as the complement of {A(p), p € P} is {X — A(p), p € P},
but this does not give a proper varying set, since p = ¢ implies X — A(p)
D X — A(g), which is the wrong behavior. It turns out that the appropriate
definition is 7A := {DA(p), p € P}, where

=A(p) = {x € XIVg = p, x ¢ A(g)) Q.17

which is immediately checked to be a genuine varying set, i.e., p = g implies

15The notation does not include a specific reference to the functions X,y X(p) — X(q), but
these are understood to be implicitly included.
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“A(p) C 7A(q). It follows that x ¢ 7A(p) if and only if there is some g =
p such that x € A(q), and hence

TA(p) ;= {x e XIVg=pIr=gs.t x e A} (2.18)

It is clear that A(p) C ™A(p), whereas in normal set theory the double
complement of a subset is always equal to the subset itself. This nonstandard
behavior in the varying-set theory is a reflection of the fact that the underlying
logical structure is non-Boolean (see later).

As in the case of sets through time, a key role is played by the collections
Q(p), p € P, of all upper sets lying above p. More precisely, a sieve'® on
p in @ is defined to be any subset S of & such thatif r € S, then Q) r = p
and (ii) #' € S for all ' = r. For each p e %P, the set ()(p) of all sieves on
p can be shown to be a Heyting algebra (under the usual set-theoretic opera-
tions of inclusion, intersection, and union of subsets!”), and for all pairs p
=< g there is a natural map (,,: Q(p) — ((q) defined by

Q,,(8 := SN 1(g) (2.19)

where 1(q) := {r € Plr = q} is the unit element in the Heyting algebra
(g) (the null element is the empty set). It is easy to see that, with the maps
Q,,in (2.19), Q := {Q(p), p € P} is a varying set over P and hence an
object in the category Set”.

A very important example of the use of ) occurs if A is a subobject of
the object X. There is then an associated characteristic morphism x*: X —
Q with, at each stage p € P, the ‘component’ xj: X(p) — {(p) being
defined by

Xp(@) := {q = pIX,y(x) € Al@)} (2.20)

where the fact that the right-hand side of (2.20) actually is a sieve on p in
% follows from the defining properties of a subobject. Thus in each ‘branch’
of the poset going up from p, x4(x) picks out the first member ¢ (the “time
till truth”) in that branch for which X, (x) lies in the subset A(g), and the
commutative diagram (2.15) then guarantees that X,,(x) will lie in A(r) for
all r = q. In the special case where X(p) = X for all p, (2.20) simplifies to
[cf. (2.8)]

Xp() = {qg = plx € A(®)} (2.2

In what follows, the expression (2.21) plays a crucial role as the analogue
in the theory of varying sets of the characteristic map (2.1) x*: X — {0, 1}

15This is the notation employed by Bell (1988); other authors (for example, MacLane and
Moerdijk, 1992) use the term ‘cosieve’ for what Bell calls a ‘sieve’ and vice versa.

""The precise algebraic relations will be given later for the specific example of interest in the
consistent-histories theory.
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of normal set theory. Indeed, the analogue of the relation (2.2) for the situation
epitomized by (2.21) is [cf. (2.10)]

A(p) = xp "{((p)} (2.22)

at each stage p € P. Conversely, each morphism x: X — () defines a
subobject of X [via (2.22)], and for this reason the object € in Set? is known
as the subobject classifier in the category Set”; the existence of such an
object is one of the defining properties'® for a category to be a topos, which
Set? is. As the target of characteristic maps (i.e., the analogue of {0, 1} in
normal set theory), {0 can be thought of as the ‘object of truth values’—a
soubriquet that is reinforced by the observation that £} has the internal structure
of a Heyting algebra. For example, the conjunction A: X 1 — Q is defined
to be the morphism in the category Set” whose components A,: (p) X
Qp) - Up), p € P, are the conjunction operations (the set-theoretic
intersection of sieves on p) in the ‘local’ Heyting algebras {)(p); the other
logical operations are defined in a similar way.

The main thesis of the present paper is that a situation closely analogous
to the one sketched above arises naturally in the theory of consistent histories
where the basic quantum ingredients are an orthoalgebra UP of history
propositions and a specific decoherence function d. In particular, we have
(i) the idea of a ‘context’ or a ‘stage’ and (ii) the property that—at each
such stage—the truth values lie in a Heyting algebra. As emphasized already,
the key point in the formalism of consistent histories is that the central
second-level propositions (o, p) (“the probability of the history proposition
o € UP is p”) only have a physical meaning in the context of a particular
d-consistent set of propositions to which a belongs or, to be more precise
(see later), in the context of any set of propositions that can be coarse-grained
to give a d-consistent set that contains «. It is technically convenient to
employ the Boolean subalgebra of ‘UP generated by any given set of history
propositions, rather than the set itself, and in this framework my thesis is
essentially that:

* each nontrivial Boolean subalgebra W, of the set UP of all history
propositions can serve as a possible ‘stage’

+ the truth value (or semantic value) of (a, p) at a particular stage W,
is related to the collection of all coarse-grainings W of W, that contain
o and are d-consistent.

As we shall see, the implementation of this idea involves a specific
application of the idea of sets varying over a poset, and hence we do indeed

18 Another defining property for a category % to be a topos is that a product A X B exists for
any pair of objects A, B in ‘6. For the full definition see one of the standard texts (for example,
Goldblatt, 1984; Bell, 1988; MacLane and Moerdijk, 1992).
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obtain a Heyting algebra of possible semantic values at each stage. Moreover,
we will show how second-level propositions of the type {a, p) can be associ-
ated with. (-valued morphisms; as such, they belong to the internal logic
(and, indeed, formal language) that is associated with the topos Set®, where
B denotes the poset of all nontrivial Boolean subalgebras of UP (see below
for details). Thus the internal logic of the topos provides a framework for
understanding the logical structure of probabilistic predictions in a consistent-
histories theory in a way that automatically includes all possible contextual
references to d-consistent sets. We thereby arrive at a coherent logical structure
for this particular ‘many-world-views’ picture of quantum theory.

3. BOOLEAN SUBALGEBRAS OF PROPOSITIONS
3.1. The General Formalism of Consistent Histories

In the general approach to the consistent-history formalism developed
by Isham (1994) and Isham and Linden (1994), the central mathematical
ingredient is a pair (UP, D) where UP is an orthoalgebra'® of ‘history
propositions’ and & is the space of decoherence functions defined on this
algebra [for a short summary of the scheme see Isham (1995)].

It should be emphasized from the outset that, in practice, the orthoalgebra
formalism is much less abstract than it might appear at first. In particular,
for any given physical system it is always appropriate to consider the possibil-
ity that U% may simply be the algebra P(V') of projection operators on some
Hilbert space V’; in this case, o @ B is defined if and only if af = 0, and
then a @ B = o + B. For example, it was shown in Isham (1994) that the
history version of normal quantum theory for, say, a finite number of time
points {#, &, ..., t,} can be cast into this form. Specifically, the history
propositions are identified as projection operators on the tensor product space
*, Q%,® --- @ ¥,, where each ¥,, is a copy of the Hilbert space of
states J€ of standard canonical quantum theory. The extension of this idea
to a continuous time variable is discussed in Isham and Linden (1995).

Returning to the general formalism, we recall that a decoherence function
is a map d: UP X UP — C that satisfies the following conditions:

19 An orthoalgebra U®P is a partially ordered set with greatest element 1 and least element 0
and for which there is a notion of when two elements «, § are orthogonal, denoted o L B.
If o and B are such that o 1 B, then they can be combined to give a new element o © B
€ UP. Furthermore, a < B if and only if = a @ v for some y € UP. There is also a
negation operation with o © —a = 1 [for the full definition of an orthoalgebra see Foulis
et al. (1992)]. It should be noted that the structure of an orthoalgebra is much weaker than
that of a lattice. In the latter there are two connectives A and v, both of which are defined
on all pairs of elements, unlike the single, partial operation € in an orthoalgebra. A lattice
is a special type of orthoalgebra with o €@ B being defined on disjoint lattice elements «, 3
(i-e., those for whicha < "B)asa @ B := a v B.
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1. Hermiticity: d(o, B) = d(B, a)* for all a, B.
. Positivity: d(a, ) = 0 for all .
3. Additivity: if a L B (i.e., o and 3 are orthogonal), then, for all vy,
d(o ® B, y) = d(a, v) + d(B, V).
4. Normalization: d(1, 1) = 1.

Note that the additivity condition implies that, for all a € UZP,
d0,a) =0 3.1

We also note that, as shown by Isham et al. (1994), in the concrete case
where UP = P(V) for some Hilbert space V' every decoherence function
can be written in the form

d(a, B) = trygy(a ® BX) (3.2)

where X belongs to a precisely specified class of operators on V' & V.

Following Gell-Mann and Hartle, a finite set C := {a, ay, ..., ay}
of nonzero propositions is said to be complete if (i) a; L o, for all i, j = 1,
2, ..., N; (ii) the elements of C are ‘jointly compatible,’ i.e., they belong
to some Boolean subalgebra of UP; and (iii) a; P a, D - Doy =1.1In
algebraic terms, a complete set of history propositions is simply a finite
partition of unity in the orthoalgebra UP.

It should be noted that in the history version of standard quantum theory,
the decoherence function for a particular system depends on both the initial
state and the Hamiltonian. Thus, in general, for any specific history system
the decoherence function d will be one particular element of 9. It must be
emphasized that only d-consistent sets of history propositions are given an
immediate physical interpretation. A complete set C of history propositions
is said to be® d-consistent if d(a, B) = 0 for all @, B € C such that o #
B. Under these circumstances d(o, a) is regarded as the probability that the
history proposition a is true. The axioms above then guarantee that the usual
Kolmogoroff probability rules are satisfied on the Boolean algebra generated
by C.

It is worth noting that the idea of an orthoalgebra is closely related to
that of a Boolean manifold: an algebra that is ‘covered’ by a collection of
maximal Boolean subalgebras with appropriate compatibility conditions on
any pair that overlap (Hardegree and Frazer, 1982). Being Boolean, these
subalgebras of propositions carry a logical structure that is essentially classi-
cal, a feature of the consistent-histories scheme that was focal in the seminal
work of Griffiths and Omnes and that has been reemphasized recently by

201n what follows I shall only consider the strong case where d(a, ) itself vanishes, rather
than just the real part of d(a, B). The phrase ‘consistent set’ will always mean ‘strongly’
consistent in this sense.
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Griffiths (1993, 1996). In the approach outlined above, these Boolean algebras
are glued together from the outset to form an orthoalgebra UP of propositions
from which the physically interpretable subsets are selected by the consistency
conditions with respect to a chosen decoherence function.

Any partition of unity C := {a,, oy, ..., oy} generates a Boolean
algebra whose elements are the finite?! ®-sums of elements of C (hence the
elements of C are atoms of this algebra). If C is d-consistent, and if a :=
@;cp,0; and B := D, p0; are two members of the algebra (where I, and I,

are subsets of the index set {1, 2, ..., N}), then, by the additivity property
of the decoherence function d,
dio, By = 3 dlo, ) (3.3)
ielinl

On the other hand

arB= & o (34
iehnlp
and so
dao,B)=daAB,anB) (3.5)

for all o, B in C.

In a general orthoalgebra UP not every Boolean subalgebra is necessar-
ily generated by a partition of unity—for example, any Boolean subalgebra
that is not atomic falls in this class. Partly for this reason it is helpful to
define consistency for Boolean algebras per se, rather than go via partitions
of unity. Moreover, it is also pedagogically useful to do so, as it emphasizes
the essentially ‘classical’ nature of the properties of the propositions in a d-
consistent set. Motivated by (3.5), I propose the following definition:

Definition 3.1. For a given history system (UP, d), where d € 9D, a
Boolean subalgebra W of UP is d-consistent if for all a, B € W we have
dla, B) = da A B, a A B).

Note that the smallest subalgebra {0, 1} is trivially d-consistent for any
d since, by virtue of (3.1), d(0, 1) = 0 = d(0, 0) = d(0O A 1,0 A 1). Itis
technically convenient to exclude this trivial Boolean subalgebra as a possible
consistent set (it contains no interesting propositions) and this will be done
in what follows. The set of all nontrivial Boolean subalgebras of U%P will
be denoted 9B; the set of all nontrivial d-consistent Boolean subalgebras will
be denoted %7,

2'With appropriate care these ideas can be generalized to include countable sets and sums, but
the details are not important here.
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The relation of the definition above to the earlier one of strong consis-
tency is contained in the following lemma.

Lemma. The condition (3.5) on all elements a, B in a Boolean subalgebra
W is equivalent to

dla,B) =0 forall o, € W suchthat o L 8 (3.6)

Proof. Suppose that (3.5)istrue and leta L 3. Then a A B = 0 (in a
Boolean algebra, o L B if and only if a A § = 0) and hence d(c, B) = d(0,
0)=0.

Conversely, suppose (3.6) is true and let a, B « W. Then there exist
jointly orthogonal elements o, B,y € Wsuchthat o = o, @ yand B =
B, D v. Indeed, we can choose o; ;= aa A B, B :=B A, and y := «a
A B, where the general lattice operation A is well defined in this Boolean
subalgebra. Then, by the additivity property of the decoherence function,

d(a, B) = d(o; D v, B) © v) = dlay, By) + d(ay, y) + d(y, B) + d(v, v)
=dlaAB, AP 3.7

since (3.6) means that «; L B, implies d(ay, B)) = 0, etc. QED

In what follows I shall refer to a Boolean subalgebra of UP as a window
in order to convey the idea that it affords a potential way of ‘looking’ at the
physical world; the initial letter ‘w’ also serves to remind us that a window
can be regarded as a possible ‘world-view’ or even ‘weltanschauung.” A d-
consistent window is what Griffiths (1996) calls a ‘framework.’

3.2. Key Features of the Space % of Boolean Subalgebras

The crucial property of % for our purposes is that it is a partially ordered
set with respect to subset inclusion, and we write W, = W, if W, D W, (W,
=< W, is defined in this way rather than as W; C W, in order to be consistent
with our earlier discussion of sets varying over a poset). For such a pair we
say that (i) W, is a fine-graining of W, and (ii) W, is a coarse-graining of
W, (for convenience, this terminology includes the idea that any window W
e B is both a coarse-graining and a fine-graining of itself). Note that the
set B¢ of d-consistent windows is a subset of & and inherits its partial-
ordering structure. Moreover, 3¢ is closed under coarse-graining: if W is
d-consistent, then so is any W, = W,; thus coarse-graining preserves d-
consistency—a crucial property for our later discussions. However, there is
generally no biggest (with respect to C) d-consistent coarse-graining of a
non-d-consistent window.

Let us now recall the earlier discussion of sets varying over a poset
while making the following key definitions.
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Definition 3.2. 1. A sieve on Wy € B in R is a (possibly empty) subset
S of windows in % such that

(a) W e S implies W = W, (i.e., W C Wy)

b)yWe Sand W = W (ie., W C W) implies W’ ¢ §.
Thus a sieve on W is an upper set in (B, <) all of whose elements are
coarse-grainings of W,

The set of all sieves on Wy is denoted (Y Wp).

2. A sieve 'S on W, is d-consistent if every W e S is d-consistent.

The following properties of sieves are crucial for our purposes.

1. For each W, the set ((W;) of all sieves on W, in B is a partially
ordered set with §; = S, being defined as S|, C S,. The greatest element 1
is the principal sieve

WWo) = (We BIW= Wy} = {We BIWC W} (3.8)

and the least element O is the empty subset of windows.

2. The poset (Wy) is a distributive lattice with the operations (i) S; A
S, =8 N Sand (i) §; v S, := 8§ U 8,. In fact, Q(Wy) is a Heyting
algebra, i.e., given sieves S| and S,, there is a sieve (S, = §,) such that, for
all S,

S=E1=>85) ifandonlyif SAS =85, (3.9
This sieve is defined as

SI=85)={(WCWIVW' CWiIfW' e §, then W' € S}
(3.10)

In a Heyting algebra, the negation of an element x is defined by —x := (x
= 0). Thus, for a sieve S on W,

S = (WO W lVW C W, W ¢S} (3.11)

As explained earlier, a central idea in the inteérnal logic of varying sets is
that the Heyting algebra £}(W,) serves as the space of semantic values for
propositions at the stage W,

3. The collection () := { (W), W € B} is a set varying over B under
the definition, for all pairs W, = W, (ie., W, C W)),

Qw,wy: AUW)) = QUW,)
S—=SNITW,) = {WC W, IWeS} (3.12)
We can also define the sets of d-consistent sieves
QW) := {S € ((W)IS is d-consistent} (3.13)
and note that, like , Q¢ := {Q4W), W € B} is a set varying over (B, =)
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if, for W, = W,, Qfy,w,: QUW)) — Q4W,) is defined by Qfyw,(S) := S
N T(Wy).

Finally, although no explicit use of it will be made here, we note that
another simple example of a set varying over (B, <) is given by {9y, W
e B}, where Dy is defined to be the set of all decoherence functions for
which W is a d-consistent window:

Dy :={d e DIW e R} (3.14)

The family {9y, W € B} is a genuine object in Set® since if W, is a coarse-
graining of W, (i.e., W, == W,), then if d is such that W, is d-consistent (i.e.,
d € Dy,), then W, is d-consistent, too (i.e., d € Dy,), and hence W, = W,
implies that Dy, C Dy,

4. SEMANTIC VALUES IN CONSISTENT HISTORIES
4.1. Realizable Propositions

We come now to the main task of the paper: to formulate precisely the
idea that a second-level proposition like (., p) (“the probability of the history
proposition o being true is p”) has a meaning only in the context of a window,
and has a semantic value that belongs to some logical structure associated
with that window—in particular, we anticipate that a semantic value can be
identified with a sieve on the window.

Let us start by considering what is necessary for a proposition {a, p) to
have any meaning at all in the context of a particular window W and for a
given decoherence function d. Perhaps the simplest position to adopt here is
that in order to be able to ‘realize’ o in the context of W, the history proposition
a must belong to the Boolean algebra W, and W must be d-consistent.?? This
suggests the following definition:

Definition 4.1. A proposition a € UP is d-realizable in a window W
if (i) W is d-consistent and (ii) « € W.

Then

W o if We®?

a otherwise .1

RYW) := {alWe%dandaeW}={

is the set of all*®> propositions that are d-realizable in W.

220f course, it could be that d(o, a) = 0, but the statement that the state of affairs described
by the history proposition a has zero probability is still a positive prediction about the universe.

B This definition has the property that even the 0 and 1 history propositions are deemed not
to be d-realizable in a window that is not d-consistent. Of course, this does affect the fact
that, forall d € @, d(0, 0) = 0, d(0, 1) = 0, and d(1, 1) = 1.
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Continuing to reason in this heuristic way, we could argue next that
even if a window W, is not d-consistent, the proposition {(«, p) still has a
meaning at stage W, provided that a coarse-graining W of W, exists in which
o is d-realizable. However, there may be many such coarse-grainings: and
the focal idea of this paper is that this should be reflected by assigning an
appropriate semantic value to (o, p)—in the present case, a natural choice
would be the set of all coarse grainings of W,, in which « is d-realizable [on
the assumption that d(a, ) = p; if not, the semantic value is deemed to be
the empty set]. In other words, we tentatively assign to the second-level
proposition {(a, p) the semantic value at stage W, defined as

4 _ Jtwc WolWe Band a € W} if dlo,a)=p
Vin({e p)) : {ﬁ otherwise
“2)

which would make sense provided that the set of all such semantic values
belongs to some logical algebra.

However, this assignment does not work in the way we have been
anticipating because the right-hand side of (4.2) is generally not a sieve on
Wy [because if W belongs to V§,((, p)), then any W' C W with a ¢ W'
will not]. Thus we cannot identify the set of possible semantic values at a
stage W, with the Heyting algebra of the space of sieves on Wj. In itself this
does not rule out the use of (4.2) but it implies that any logical structure on
the set of semantic values must be obtained in a way that is different from
our anticipated use of the topos of varying sets Set®. One possibility is
sketched in Appendix A.

4.2. Accessible Propositions

The problem with the semantic value V§,{a, p) suggested in (4.2) can
be seen from a somewhat different perspective by noting that RY := {RYW),
W e B} does not define a proper varying set over &B. This is because
increasing the size of the window W (i.e., fine-graining it) increases the
number of propositions contained in W—which suggests that W, C W,
implies R4W,) C RYW;)—but it decreases the chances of d-consistency—
which suggests that W, C W, implies R4W3) D RYW,). The net effect is
that if W, < W, there is no obvious relation between R4 W,) and R4W,) and
hence no obvious candidate for the collection of maps Rfy,w,: RYW) -
RUW,) that is necessary for R = {RYW), W € B} to be a varying set.

Note that a genuine varying set can be obtained by the simple expedient
of replacing the condition a € W in (4.1) by o ¢ W. This gives rise to a
new concept: namely of a proposition a being ‘unrealizable,” but this is not
what we are seeking and therefore further discussion is relegated to Appendix
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B where it serves as a particularly simple example of what is meant by an
object in the topos Set®.

Evidently a new idea is needed of what it means to say that a proposition
o is ‘realizable’ in a window W. On reflection, do we really require that o
actually belongs to W? Surely it suffices that W can be extended (i.e., fine-
grained) to a bigger d-consistent window that does contain o?

This new concept differs subtly from the earlier version of ‘realizability’
and the terminology should reflect this. We are thus lead to introduce a new
family of second-level propositions of the form “a is d-accessible” where o
e UP. As with the second-level propositions {a, p), there is no reference
to windows per se, and 1 shall indicate this by referring to propositions of
this type as global. However, the key idea we wish to develop is that—as
hinted above in the example of d-realizability—in order to interpret a global
proposition within the framework of the consistent-histories program it is
first necessary to ‘localize’ it by constructing secondary versions that do
refer to windows (cf. (4.2)). Then we can introduce the notion of the ‘semantic
value at a stage W, of the global proposition, and we find that it does indeed
lic in a Heyting algebra. The aim is to use the topos-theoretic ideas discussed
earlier so that, in particular, the Heyting algebra appropriate to a stage W,
is the set (W) of sieves on W, in (B, =).

We begin with the following definition of the ‘localized’ version of the
new family of global propositions “a is d-accessible,” denoted {(a, A?).

Definition 4.2. A proposition a € UP is d-accessible from a window
W if there exists W’ D W such that (i) @ € W’; and (i1) W' is d-consistent
(i.e., a is d-realizable in W’).2* Then

AYW) := {o|IW D Wst W e Blando € W'} (4.3)

is the set of all propositions that are d-accessible from W. Note that this can
be rewritten as

AYW) = {alIW’' D Ws.t. o € RYW")} 4.4)

where R4 W) was defined in (4.1). Thus a proposition « is d-accessible from
a window W if and only if there exists some fine-graining W' of W in which
o is d-realizable.

The following properties of these sets are crucial for our purposes.

1. If W, < W, then A4W,) C A4W,) (because coarse-graining preserves
the property of d-consistency), and hence, unlike the case for R, the collection
A? := {AYW), W € B} is a genuine varying set over (B, =) with Afy,w,:
AYW,) — AYW,) defined simply as subset inclusion. In this sense, ‘accessibil-

24Note that this implies that W itself must be d-consistent—no propositions are accessible from
a non-d-consistent window.
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ity” works while ‘realizability’ fails. As we shall see, this new object A? in
Set® is the crucial ingredient in my topos-based semantics for interpreting
the second-level propositions {«, p) in the consistent-histories program.

2. The varying set A? is a subobject of the constant varying set AUP
in Set?,

AUPW) := UP forall W € B 4.5)

Hence there is a characteristic morphism X AUP — Q in the topos Set®
which, according to (2.21), is defined at any stage W, by (cf., (2.8))

XWO AUP(Wp) = (W)
a - (W= Wla e AYqW)) (4.6)
={(WCW,3W D Wst W e B?anda € W'}

where, as can readily be checked, the right hand side is a bona fide sieve on W,

The sieve on the right hand side of (4.6)—which actually belongs to
the subject Q4W,) of Q(Wy)—is interpreted as the semantic value at the
stage W, of the global proposition “a is d-accessible.” Note that, by the
property (2.22) of a characteristic morphism, a history proposition a is d-
accessible from a window W if and only if

Xiy() = T(W) 4.7)

where T(W) = (W' e BIW= W } is the unit 1 of the Heyting algebra (Q((W).

The definition (4.6) of x“‘ AUP — 1 and property (4.7) illustrate the
essentially ‘fuzzy’ nature? of subobjects in Set®. More precisely, if a is d-
accessible from W then x’éy(a) = 1; but even if a is not d-accessible from
a window W,, the proposition {a, Ad) is still ascribed a semantic value at
stage W, that is generically not the null element O (the empty sieve) of the
Heyting algebra {}(W,): namely, the set of all coarse-grainings W of W, from
which a is d-accessible. Thus the semantic value at stage W, of the global
proposition “a is d-accessible” reflects the extent to which W, needs to be
changed in order that a does become d-accessible from it. Hence coarse-
graining a window is the analogue in the consistent-histories theory of choos-
ing a later time in the example of sets-through-time discussed earlier (compare
(4.7) with (2.9)).

A key role for () is to impart a logical structure to the collection of all
global propositions, and the first step in this direction is to note that (4.6)
can be used to define for each a € UP (and for given decoherence function
d) what is known in the topos literature as a global element of the object

*>This is not a coincidence: fuzzy set theory can be viewed as a sub-branch of topos theory.
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Q, i.e., a morphism 1 —  in Set® where 1 is the terminal object?® in Set®
defined by 1(W) := {*} (the set w1th one element) for all W e . Specifically,
for each a € UP we define ¥*“(a): 1 — Q by specifying its components
A (@wy: 1(Wo) — QW) to be

U wg(*) 1= X)) (4.8)
where the right hand side is given by (4.6). In turn, this produces a map?’
A% UP — Himg2(1, Q) (4.9)

where Homg#(1, 1) denotes the set of morphisms from 1 to € in the topos
category Set®,

By these means, to each global proposition (o, A% we can associate a
corresponding ‘valuation’ morphism

Va, A%): 1 - Q (4.10)

where V{(a, A% := %*“(a) is a global element of ; i.e., V is a map from
global propositions to global elements. In normal set theory, a map from {*}
(the terminal object in the category of sets) to a set X picks out a unique
element of X, and (4.10) can be regarded as the analog of this procedure in
the category Set® of varying sets. Thus (4.10) encapsulates the idea that in
our topos interpretation of the consistent-histories formalism, a ‘generalized
truth value’ is associated to each global proposition (&, A9)—namely the
global element V{a, A%: 1 — Q of Q.

Referring to (4.10) as a ‘valuation’ seems to imply that it preserves
some logical structure on the propositions {a, A¢). However, we do not have
any such structure a priori: rather, the intention of (4.10) is to use the Heyting
algebra structure of ) to define a logical algebra on the global propositions
{a, A%—a goal that can be achieved by associating each such second-level
proposition with the corresponding global element of (). For example, if
Wa, A%: 1 = Q and V(B, A%: 1 — Q are global elements of () corresponding
to the global propositions (&, A9) and (B, A9) respectively then the global

26 An object 1 is said to be a terminal object in a category if there is just one morphism from
any other object to 1; it is easy to see that any two terminal objects are isomorphic. In the
category of sets a terminal object is any set {*} with just a single element. In this case a
morphism is just a map, and hence a morphism {*} — X picks out a unique element of X.

2"We are exploiting here the fact that the constant presheaf functor A: Set — Set® is left adjoint
to the ‘global sections’ functor I': Set? — Set where, for any object F in Set®, we have ['F
:= Homg.®(l, F). This adjointness relation gives rise to a natural isomorphism
HomSC,%(AS, F) = Homg,(S, I'F) for any set S. In our case the set S is UP and the functor
F is ; thus the isomorphism of interest is Homg. #(AUP, S}) == Homg (UP, [')). The
element in Homg,s(AUP, () with which wedare concerned is x*" and its image in Homg,(UP,
Q) is what we have denoted x" Thus ¥*' () € TQ = Homga(1, ).
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proposition “(a, A%) and (B, A%)” is associated®® with the global element of
) defined by the chain

<V, AD, V(B, A% >

1 25 T axaba @.11)

where A : {0 X ) — () is the ‘and’ operation in the Heyting algebra structure
on ). This is a rather sophisticated analog of the treatment of {(a, p) A (B,
q) by the expression (2.5) in the context of our earlier discussion of second-
level propositions in a classical theory.

Note however that the map )”("d in (4.9) is not one-to-one, and hence
neither is the valuation map {(a, A% —~ Wa, A9 that associates a global
element of O with each (a, A9). Thus—analogous again to our discussion
in section 2.1 of classical second-level propositions—we are led to define
two global proposition as being d-semantically equivalent if they are associ-
ated with the same global element of () (with a given decoherence function
d): properly speaking, it is only to the equivalence classes of such propositions
that the logical algebra applies.

For example, although in the construction (4.6) the quantity AUP is
regarded purely as a set and the orthoalgebra structure plays no a priori role,
nevertheless—since W is a Boolean subalgebra of UP—if a € W then "«
€ W and vice versa. Hence a ¢ W if and only if "o ¢ W, which implies
that, for all a € UP,

Xio(@) = X" (4.12)

Thus {(a, A%) and (~a, A%) are d-semantically equivalent® for any o € UP
and for all decoherence functions d.

4.3. The Semantic Values for («a, p)

Finally we are in a position to treat the main goal of the paper, namely
propositions of the type (a, p)—*“the probability of history proposition o
being true is p.” All we have to do is to supplement the requirement of d-
accessibility with the additional condition d(a, &) = p. Thus I propose to
interpret the global proposition {a, p) by specifying it to have the following
‘localized’ form:

Definition 4.3. The proposition {a, p) is d-accessible from a window W
if (i) a is d-accessible from W; and (ii) d(a, o) = p.

B Note that “(a, A% and (B, A%)" is not itself of the form (y, A% for any y € UP. It is thus
more accurate to think of the propositions {, A%), @ € UP as the sentence letters of a formal
language whose sentences are constructed with the aid of the usual logical connectives.

21 am grateful to Pen Maddy for the gnomic remark that this conclusion is consistent with
proposition 4.0621 in Wittgenstein’s Tractatus.
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Let A%(W) denote the set of all propositions a € UP such that (o, p)
is d-accessible from W:

At(W)
= {al3W D Wsit. W e B% a € W,and d(a, @) = p} (4.13)

These sets obey the basic condition W, = W, implies A“?(W,) C A%P(W,)
and hence, for each p e [0, 1], A% := {A%’(W), W e B} is a varying set
over 9.

The varying set A%? is a subobject of the constant varying set AUP,
and hence for each decoherence function d (an analog of the state ¢ that
arises in (2.3)) and each p € [0, 1] we get the crucial characteristic morphism
X1 AUP — O in Set® whose components are the maps x%: AUP(W,) —
AWy, W, € B, defined by

Xwh(e)
_= {{Wg WoldW’' J Wwith W € B?anda e W'}  ifd(a, ) =p

a otherwise
4.14)

The right hand side of (4.14) is a genuine sieve and is to be regarded as the
semantic value at stage W, of the global proposition {a, p) “the state of
affairs represented by the history proposition a € UP has probability p
of occurring.”

As was the case with (a, A%, the global proposition {a, p) can be
associated with a global element %*?(a): 1 — () whose components
XP(@wy: 1(Wo) — UW,) are defined as x*(c)Wo(*) :) x§#f(a). Putting
together these various results we finally arrive at the desired ‘valuation
morphism’

V¥, p): 1 > Q 4.15
whose components VXa, phw,: 1(Wy) — (W) are given by
Vd(“-, P>W0(*)

W WI3W D Wst. W e Blanda € W'} ifd(a, @) =p
Y otherwise
(4.16)

The topos result (4.16) should be compared with the simple expression
(2.4) that applies in a more conventional probability theory. Once again we
see the ‘fuzzy-set’ nature of the topos scheme in the sense that at any particular
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stage W, the proposition (&, p) may be assigned a semantic value other than
O0:=@or1:="1TW).

As in the earlier example of the second-level propositions (o, A%, it is
appropriate to define two global propositions (a, p) and (B, g) to be ‘d-
semantically-equivalent’ if they are associated with the same global element
of £}, i.e., if their semantic values are equal in all windows. For example, it
is clear from (4.16) that, for all decoherence functions d, the second-level
propositions {a, p) and ("a, 1 — p) are d-semantically equivalent for all a
e UP and all p e [0, 1]. This is because if o belongs to some window W’
then so does —a. Furthermore, if W’ is d-consistent then d(o, 7o) = 0 and
hence, by additivity of the decoherence function d,

1 =d, 1) =dla® a,a® ) = da, o) + d—a, o) 4.17)

which shows that d(—a, ~a) = 1 — d(a, o).

By these means, the (equivalence classes of) elements of the formal
language generated by global propositions of the type (a, p) can be associated
with elements of a logical algebra that is identified as a subalgebra of the
Heyting algebra on the set Homg,#(1, ) of global elements of ) in Set®.
The expression (4.15)—with its component version (4.16)—represents the
final form of our analysis of the logical structure of the consistent-history
propositions “the probability that o € UP is realized is p” in the context of
topos theory.

5. CONCLUSIONS

A key ingredient in the consistent-histories formulation of quantum
theory is the existence of d-consistent sets of propositions. We have argued
that, in the approach where a preferred set is not selected once and for all,
the ensuing many-world-views semantics can be described mathematically
with a topos-theoretic framework based on the idea of sets varying over the
partially ordered set B of all nontrivial Boolean subalgebras of the orthoalge-
bra of history propositions. In particular, we have seen how a global proposi-
tion such as “the probability of the history proposition o being true is p” can
be interpreted in a way that identifies any window W, € & as a potential
‘stage’ and where the semantic values at each such stage lie in a Heyting
algebra. This situation stems from the central claim that each global proposi-
tion can be identified with a global element 1 — (2 of the space () of semantic
values in the topos category Set®. Propositions of this type in the consistent-
histories program include (o, A%, {a, p), and (as discussed in Appendix
B), (o, U%. The collection of d-semantic equivalence classes of all*® such

¥Mixed propositions—for example, “(a, U%) and (B, p)’—are allowed.
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propositions generates a logical structure that is inherited from that of ). It
should be emphasized once more that, in practice, the space UP may simply
be the set of projection operators on some Hilbert space, in which case the
analysis of the crucial poset % is a viable concrete task.

The general conclusion of this paper is that topos methods provide a
natural mathematical framework in which to discuss the inner logical structure
that lies behind ideas of many windows, or world views, in the quantum
theory of histories. One general aim of this approach is to avoid the instrumen-
talism that dominates much conventional thinking about quantum theory,
although—as is frequently the case—it is difficult to give a simple physical
picture of what the formalism means in these circumstances. However, if we
accept the idea that ‘classical realism’ is associated in some way with a
Boolean algebra of propositions, then we have to say that—because of its
intrinsic Heyting algebra logic—the ‘many-windows’ interpretation of the
decoherent-histories formalism corresponds to a type of neorealism that, on
the one hand, is more complicated and subtle than the simple realism of
classical physics, but which, on the other hand, does not go as far as the
nondistributive structure that characterizes quantam logic proper. Of course,
this does not affect the fact that the underlying orthoalgebra UZP of history
propositions is a genuine quantum logic.

In the context of ‘many world-views’ it is worth noting that the concept
of a proposition being ‘d-accessible’ from a window W clearly extends to
Boolean subalgebras in general: i.e., we can say that a window W’ is d-
accessible from a window W if there exists a d-consistent window W” that
contains both W' and W; a single proposition « is then d-accessible from W
in the sense of (4.3) if and only if the window {0, 1, a, ~a} is d-accessible
from W in the sense just described. However, this is just the consistent-
histories analogue of the idea of ‘relative possibility’ introduced by Kripke
(1963) in his original study of the semantics of intuitionistic logic (see
also Loux, 1979). This suggests that modal concepts such as ‘necessity’ or
‘possibility” should find a natural home in the quantum formalism of consis-
tent histories after making the shift from Kripkean ‘worlds’ to ‘windows’;
but this remains a topic for future work.

The topos-theoretic ideas used in the present paper are rather elementary,
being essentially restricted to the theory of presheafs on a poset, and there
is a lot more to the subject than that. However, even at the simple level of
the theory of varying sets it seems clear that the ideas discussed here could
find applications in other areas of quantum theory where some type of
contextuality arises. An example might be the idea of ‘relational quantum
theory’ that has been actively developed recently by several authors (for
example, Crane, 1995; Smolin, 1995; Rovelli, 1997). It also seems possible
that the well-known contextuality of truth values in standard quantum theory
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(i.e., the Kochen—Specker theorem) could be explored profitably from this
perspective.

APPENDIX A. AN ALTERNATIVE APPROACH

I shall sketch here a method whereby it is possible to assign the set
[cf. (4.2)]

[4Wy) := (WC Wyl W e B?and a € W} (A.D)

as the semantic value at stage W, of the global proposition {(a, p) [on the
supposition that d(a, o) = p] even though the right-hand side of (A.1) is not
a sieve on W, in (B, =).

The first observation is that—assuming for simplicity that d(a, @) = p
and d(B, B) = q—if I'%(W,) and T ‘é(Wo) were to be the semantic values of
propositions {a, p) and (B, q), respectively, at stage W, then the global
proposition “(a, p) or (B, q)” would presumably be represented at stage W,
by the set

Td(Wo) U TH(Wo)
={(WCWiWe R,aeWIU{WCWIWe RB e W}
={(WC WIWe Rand (. € Wor B e W)}
= {WC W IWe Band {a, B} N W # @} (A2)

Since the right-hand side of (A.2) is not itself of the form I'Y(W,), we
do not have algebraic closure. However, the structure of (A.2) is suggestive
and leads to the idea of defining the ‘trapped’ sets

THW,) := (WC WolW e Béand F N W # 6} (A3)

where F is any finite set of propositions from UP. Note that T4YW,) =
T‘{a}(WO)-
The collection of all such sets is closed under the union operation since

T#(Wo) U TEW,) = THuc(Wo) (A4)
although under intersections we have

T#(Wo) N TEWy) =
(WCWiWeBand FNW#B&E&GNW#B)] (AS)
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Closure can be reestablished by defining the collections of subalgebras
Tt py... W0
={WCWIWeBjand(FFNW+O&F,NW#4,...,
& F, N W * @)} (A.6)

where Fi, F>, ..., F, is any finite collection of finite sets of propositions
in UP.

A simple way of using these sets to generate a logical algebra follows
from the following observation. There is a well-known topology (the Vietoris
topology) that can be placed on the set of all closed subsets of a topological
space and which involves trapping sets, rather as in (A.3). Motivated by what
is done in the Vietoris situation, the natural procedure in our case is to define
a topology 7, on & by taking as a subbasis the collection of all sets of the
form T¢(W) as F ranges over all finite subsets of UP and W ranges over
all nontrivial Boolean subalgebras of UP. The open sets of the topological
space (B, 7,) can then serve as the semantic values of our system.

Notice that this procedure does indeed produce a logical structure since
the collection of open sets in any topological space is always a Heyting
algebra. However, this is rather far from our original idea of presheafs on
the partially ordered set (%, =) and needs to be treated as a separate theory.

APPENDIX B. UNREALIZABLE PROPOSITIONS

The ‘localized’ form of a new, and rather simple, global proposition “a
is d-unrealizable” (denoted (o, U¢)) is given by the following definition.

Definition 2.1. A proposition a € UP is d-unrealizable in a window
W if (i) W is d-consistent and (ii) a ¢ W.

Thus we can define

QP - w if We ®
] if We MR
(B.1)

as the set of all propositions®! that are d-unrealizable in the window W. We
note that:

1. If W, < W,, then U4W,) C U4W,) and hence, unlike the case for
R?, the collection U? := {U4W), W € B} is a genuine varying set over the
poset (B, <) if the maps Uty w,: U4W,) - U4Wy), W, = W,, are defined
to be the subset inclusions.

UW):={alWe Bland a ¢ W} ={

31 Note that, according to this definition, the 0 and 1 history propositions are never d-unrealizable.
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2. The object U9 in Set® can be regarded as a subobject of the constant
varying set AUP in Set®. The associated characteristic morphism is

X AUP(Wo) — QUW,)
o (W= Wla e U{W))
= (WC WylWe Blando ¢ W) (B.2)

As was the case with {a, A%, the new global proposition (o, U%) can
be associated with a global element of the Heyting algebra () via the morphism

Ui 1-Q (B.3)

whose components are defined by )‘(Ud(a)wo(*) = x%(a) [cf. (4.8)]. There
is an associated valuation morphism Wa, U%: 1 — ), where Va, U9 :=
%V“(ct). We also note that, analogously to (4.12),

XHo(@) = X4 (" (B.4)

for all windows W, and all @ € UP. Thus {a, U9 and ("o, U?) are d-
semantically equivalent for any a € U%P and for all decoherence functions d.

Finally we remark that one might have tried to use these results to
resolve the ‘realizability’ problem by defining a proposition o« € UP to be
d-realizable in a window if it is not d-unrealizable there. This involves taking
the negation? of the variable set U in the appropriate Heyting algebra of
subobjects of the constant variable set AUP. The result is the variable set
Sy = (~UYW), W e B}, where

SUYW) = {alVW' =W, a ¢ UAW")}
={alVW' CW,W ¢ Blora e W'} (B.5)
However, this does not seem to capture at all what we instinctively want

to be true for a ‘realizable’ proposition and the definition given in the text
seems far more appropriate.

ACKNOWLEDGMENTS

I am most grateful to Jeremy Butterfield, Jonathan Halliwell, Martin
Hyland, Noah Linden, and Stephen Schreckenberg for stimulating discussions
and/or helpful comments on earlier drafts of this paper. I am also grateful to
Steve Vickers for introducing me to the literature on topos theory.

32Simply taking the set-theoretic complement of each U4W), W e B, will not produce a
proper element of Set® since the resulting sets {ala ¢ U4W)) have the wrong behavior
with respect to W, C W,. This was mentioned earlier in the context of (2.17).



Topos Theory and Consistent Histories 813

REFERENCES

Bell, J. L. (1988). Toposes and Local Set Theories: An Introduction, Clarendon Press, Oxford.

Butterfield, J. (1995). Worlds, minds and quanta, Proceedings of the Aristotelian Society,
69, 113-158.

Crane, L. (1995). Clocks and categories: Is quantum gravity algebraic? Journal of Mathematical
Physics, 36, 6180-6193.

Dowker, H. F., and Kent, A. (1995). Properties of consistent histories, Physical Review Letters,
75, 3038~-3041.

Dowker, H. F., and Kent, A. (1996). On the consistent histories approach to quantum mechanics,
Journal of Statistical Physics, 82, 1575-1646.

Dummett, M. (1959). Truth, Proceedings of the Aristotelian Society, 59, 141-162,

Foulis, D. J., Greechie, R. J., and Riittimann, G. T. (1992). Filters and supports in orthoalgebras,
International Journal of Theoretical Physics, 31, 789-807.

Gell-Mann, M., and Hartle, J. (1990a). Alternative decohering histories in quantum mechanics,
in Proceedings of the 25th International Conference on High Energy Physics, Singapore,
August, 1990, K. K. Phua and Y. Yamaguchi, eds., World Scientific, Singapore.

Gell-Mann, M., and Hartle, J. (1990b). Quantum mechanics in the light of quantum cosmology,
in Complexity, Entropy and the Physics of Information, W. Zurek, ed., Addison-Wesley,
Reading, Massachusetts.

Goldblatt, R. (1984). Topoi: The Categorial Analysis of Logic, North-Holland, Amsterdam.

Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum mechanics,
Journal of Statistical Physics, 36, 219-272.

Griffiths, R. B. (1993). Foundations of Physics, 23, 1601.

Griffiths, R. B. (1996). Consistent histories and quantum reasoning [quant-ph/9606004].

Halliwell, J. (1995). A review of the decoherent histories approach to quantum mechanics, in
Fundamental Problems in Quantum Theory, D. M. Greenberger and A. Zeilinger, eds.,
New York Academy of Sciences, New York.

Hardegree, G. M., and Frazer, P. J. (1982). Charting the labyrinth of quantum logics: A progress
report, in Current Issues in Quantum Logic, E. G. Beltrametti and B. V. van Frassen, eds.,
Plenum Press, New York.

Hartle, J. (1991). The quantum mechanics of cosmology, in Quantum Cosmology and Baby
Universes, S. Coleman, J. Hartle, T. Piran, and S. Weinberg, eds., World Scientific,
Singapore.

Hartle, J. (1995). Spacetime quantum mechanics and the quantum mechanics of space-time,
in Proceedings of the 1992 Les Houches School, Gravitation and Quantization, B. Julia
and J. Zinn-Justin, eds., Elsevier Science, Amsterdam.

Isham, C. J. (1994). Quantum logic and the histories approach to quantum theory, Journal of
Mathematical Physics, 35, 2157-2185.

Isham, C. J. (1995). Quantum logic and decohering histories, in Topics in Quantum Field
Theory, D. H. Tchrakian, ed., World Scientific, Singapore.

Isham, C. J., and Linden, N. (1994). Quantum temporal logic and decoherence functionals in
the histories approach to generalized quantum theory, Journal of Mathematical Physics,
35, 5452--5476.

Isham, C. J., and Linden, N. (1995). Continuous histories and the history group in generalized
quantum theory, Journal of Mathematical Physics, 36, 5392-5408.

Isham, C. J., Linden, N., and Schreckenberg, S. (1994). The classification of decoherence
functionals: An analogue of Gleason’s theorem, Journal of Mathematical Physics, 35,
6360-6370.



814 Isham

Kent, A. (1996). Consistent sets contradict [gr-qc/9604012].

Kripke, S. (1963). Semantical considerations on modal logic, Acta Philosophica Fennica,
16, 83-94.

Lawvere, F. W, (1975). Continuously variable sets: Algebraic geometry = geometric logic, in
Proceedings Logic Colloquium Bristol 1973, North-Holland, Amsterdam.

Loux, M. J. (1979). The Possible and the Actual, Cornell University Press, Ithaca, New York.

MacLane, S., and Moerdijk, L. (1992). Skeaves in Geometry and Logic: A First Introduction
to Topos Theory, Springer-Verlag, Berlin.

Omnes, R. (1988a). Logical reformulation of quantum mechanics. I. Foundations, Journal of
Statistical Physics, 53, 893-932.
Omnes, R. (1988b). Logical reformulation of quantum mechanics. Il. Interferences and the
Einstein—Podolsky—Rosen experiment, Journal of Statistical Physics, 53, 933-955.
Omnes, R. (1988c). Logical reformulation of quantum mechanics. III. Classical limit and
irreversibility, Journal of Statistical Physics, 53, 957-975.

Omnges, R. (1989). Logical reformulation of quantum mechanics. IV. Projectors in semiclassical
physics, Journal of Statistical Physics, 57, 357-382.

Omnes, R. (1990). From Hilbert space to common sense: A synthesis of recent progress in the
interpretation of quantum mechanics, Annals of Physics, 201, 354—447.

Omnes, R. (1992). Consistent interpretations of quantum mechanics, Reviews of Modern Physics,
64, 339-382.

Rovelli, C. (1996). Relational quantum theory, International Journal of Theoretical Physics,
in press.

Smolin, L. (1995). The Bekenstein bound, topological quantum field theory, and pluralistic
quantumn cosmology [gr-qc/9508064].

Wittgenstein, L. (1966). Tractatus Logico-Philosophicus, Routledge & Kegan Paul, London.



